
PHYS 231 Lecture Notes – Week 6

Reading from Maoz (2nd edition):

• Sections 4.1, 4.2

Once again, a lot of the material presented in class this week is well covered in Maoz, and we simply
reference the book, with additional comments and derivations as needed. References to slides on
the web page are in the format “slidesx.y/nn,” where x is week, y is lecture, and nn is slide number.
Note: references to class slides and figures in the new Maoz edition have not yet been checked.

6.1 Leaving the Main Sequence

See Maoz §4.1.
As we have seen, stars stay on the main sequence for a time

tMS ∼ 1012 yr

(
M

M�

)−3

.

This assumes L ∝M4. For very massive stars, as we have seen, L ∝M , so tMS is roughly constant,
about 3–5 Myr. After this time, a star has burned a significant fraction of the hydrogen in its core
into helium, and the composition of the central regions has changed radically. An inner core of
pure helium begins to build up.

But there is a problem. The main sequence core temperature is around 107 K, which is far too
low to overcome the coulomb barrier to fuse helium. Consequently, the core has no energy source to
make up the energy which is still diffusing outward into the cooler overlying regions. In addition, as
fusion turns hydrogen into helium, the mean molecular weight of the gas in the core increases, and
the pressure decreases. As a result of these processes, the core contracts. As it contracts, it heats
up (by the virial theorem), heating the overlying hydrogen layers and causing them to burn even
more furiously. The star at this stage has a contracting, nonburning helium core surrounded by a
shell of burning hydrogen (slides6.1/11). Its luminosity increases, its hydrogen envelope becomes
convective, and its radius increases. It is on its way to becoming a red giant.

As a cluster of stars ages, we can imagine (slides2.2/05-09) stars being “peeled off” the main
sequence from top to bottom as the helium core forms and grows in mass. They move up and to the
right in the HR diagram. The red giant branch consists of stars of different masses at various stages
of this process. One of the reasons we have such faith in the theory of stellar evolution is that the
red giant branches predicted by theory agree so well with those we actually observe (slides6.1/15).
The lines in those figures show isochrones—lines of constant cluster age, with different initial mass
stars lying at different locations along the line. Carefully fitting isochrones to observed clusters
provides a much more accurate estimate of cluster age and distance than simply trying to estimate
which star corresponds to the turnoff mass.

Eventually the helium core becomes hot enough that helium fusion can occur—around 108 K.
The density by then is around 107 kg m−3. The new reaction is known as the triple-alpha process
(helium nuclei are also known as alpha particles).

4He+4 He −→ 8Be
8Be+4 He −→ 12C + γ

(see slides6.1/16). The rate-limiting step is the first reaction, in which two helium nuclei fuse to
form beryllium, since it consumes energy, and so the beryllium nucleus quickly (after about 10−16



s) breaks up into helium nuclei. However, if the temperature and density are high enough, the
second reaction can occur during this brief time, forming carbon. This odd sequence of events has
to occur because there are no other accessible stable nuclei between helium and carbon. The star
by this time has moved up to the top of the red giant branch. Once helium fusion starts, it moves
over to a “helium main sequence” of sorts, known as the horizontal branch.

On the horizontal branch, the star has a burning helium core surrounded by a hydrogen burning
shell. Once significant carbon has formed, other elements can be created by the process of alpha
capture:

4He+12 C −→ 16O + γ
4He+16 O −→ 20Ne+ γ

4He+20 Ne −→ 24Mg + γ.

These reactions can occur even though the core is still too cool to fuse carbon because they have
a lower coulomb barrier.

As the helium core burns and carbon, oxygen, and heavier elements build up, history repeats
itself. As just mentioned, carbon can’t fuse because the temperature is too low, so an inert and
contracting carbon core builds up, surrounded by a helium burning shell and a hydrogen burning
shell (see slides6.1/17). The carbon core contracts (for the same reason the helium core contracted
when the star left the main sequence), heats up, accelerates the burning in the surrounding shells,
and the star once again brightens and expands, heading back into the red giant region. Its track is
called the asymptotic giant branch, and ultimately merges with the earlier red giant branch.

On the asymptotic giant branch, the star is convective and, this time, the convection reaches
down into the core, dredging up heavy elements and mixing them into the envelope. This turns out
to be an important source for new heavy elements in the universe, once the envelope is expelled
into interstellar space.

At this point you might imagine that the same basic cycle will keep repeating—heavier elements
are formed by fusion, build up in a contracting, nonburning core, which heats up and eventually
ignites in a new round of burning. But instead, for some stars, new physics intervenes. As we
will discuss in more detail next time, for most stars, the contracting core never heats up to the
point where carbon can fuse. Instead, the carbon-oxygen core grows, the star gets larger and
more luminous, and eventually becomes unstable. The envelope becomes detached from the star
and expands into space, leaving the hot core behind. The expanding envelope, irradiated by
ultraviolet radiation from the core, glows as a planetary nebula (bad terminology—nothing to do
with planets!). Several examples are shown in slides6.1/20-23. The core is left behind as a hot,
small, and low-luminosity white dwarf. Cluster color-magnitude diagrams (slides6.1/24) show a
well-defined white-dwarf track.

A typical white dwarf has a mass of ∼ 0.5 − 1.0M�, a radius of ∼ 104 km, and is composed
predominantly of carbon and oxygen. More massive white dwarfs contain higher fractions of oxygen
and neon.

6.2 Electron Degeneracy

See Maoz §4.2
Before the carbon core of a solar-mass star reaches a high enough density for carbon to fuse, the
gas enters a new physical state, dominated by new processes.

Up to now, we have been dealing with ideal gases, loosely defined as gases in which the con-
stituent particles can be treated as particles that interact elastically when they collide but which



otherwise exert no interparticle forces. Think of tiny billiard balls. But if a gas is dense enough,
that is no longer true. A basic prediction of quantum mechanics is that, on small scales, particles
exhibit wave properties. The de Broglie wavelength of a particle with momentum p is just

λ =
h

p
,

where h is Planck’s constant. If the interparticle separation in the gas is comparable to or smaller
than the de Broglie wavelength, then the gas is no longer ideal, but instead is governed by the rules
of quantum mechanics.

Now consider electrons (mass me) in a fully ionized gas of mean particle mass m. In energy
equipartition, clearly the lightest particles will have the largest momenta and hence the shortest de
Broglie wavelengths, so we expect them to show quantum effects first as the density increases. If the
gas has density ρ, the number density is n = ρ/m and the mean interparticle distance is ` = n−1/3.
If the temperature is T , the mean energy per particle is E = 3

2kT and the mean momentum per

(nonrelativistic) electron is p =
√

2mE, so we take

λ̄ =
h

(3mkT )1/2
.

Conventionally, we call a gas a quantum gas if

` ≤ λ̄/2 =⇒ ρ ≥ 8m

h3
(3mekT )3/2 ≡ ρq.

Plugging in the numbers for fully ionized pure hydrogen, we find

ρq = 3.4× 105 kg/m3

(
m

mp

) (
T

107 K

)3/2

.

For comparison, in the current core of the Sun, with T = 1.5× 107 K, ρq = 6.5× 105 kg/m3, more
than 4 times the actual density there, so quantum effects are relatively unimportant. But increase
the density by a factor of 10, and things would become very different. A gas in which quantum
effects dominate is called degenerate.

People often think of degeneracy as meaning high density or low temperature, but note that
even a very dense gas can still be non-degenerate if its temperature is high enough.

6.3 Fermi-Dirac Gases

Quantum mechanical particles are probabilistic things subject to the uncertainty principle, which
states that, if the uncertainty in a particle’s position is ∆x and the uncertainty in its momentum
is ∆p, then (in 1 dimension)

∆x∆p ≥ h.

In other words, if I somehow confine a particle so that I know its position to great accuracy, then
the spread in its possible momentum becomes very large. And since pressure is an integral over
momenta (see below), that means that the pressure associated with this momentum spread can be
very large. In 3 dimensions, the uncertainty principle becomes

d3x d3p ≥ h3.

Earlier we encountered the Maxwell-Boltzmann distribution of particle speeds in a gas and
the blackbody distribution of photon energies, both for systems in thermal equilibrium. In each



case, the distribution was obtained via statistical mechanics, counting all possible ways in which a
collection of particles can be in any given macroscopic energy state. We can do this with electrons
(and protons and neutrons) too, but when we do this we have to include the additional fact that
they are unlike other particles we have discussed so far in that they are subject to the exclusion
principle, which basically says that no two electrons (or protons or neutrons) can exist in the same
quantum state.

Following through the counting process subject to this condition, we find that the number of
electrons dN in volume d3x with momenta in the range d3p (a density in the 6-dimensional phase
space of positions and moments) is given by the Fermi-Dirac distribution:

dN = f(x, p) d3x d3p =
2s+ 1

e[E−µ(T )]/kT+1

d3x d3p

h3
.

Here, s is the spin of the particle (s = 1
2 for all the particles considered here), and µ(T ) is an energy

called the chemical potential, which tends to a value called the Fermi energy Ef as T → 0. The
function f is called a distribution function—the 6-D equivalent of the more familiar density in 3-D
space. Indeed, integrating f over all momenta gives us the number density of particles:

n =

∫
d3p f(x, p).

Note that as T →∞ we find
dN ∝ d3x d3pe−E/kT ,

that is, the distribution function becomes a Maxwell-Boltzmann distribution (see week 3 notes, and
note that d3p = 4πp2dp ∝ 4πv2dv), as we’d expect for an ideal gas in which quantum effects can
be neglected.

Of greatest interest here is the distribution in the completely degenerate quantum limit, when
the temperature T → 0. As illustrated in slides6.2/10-11, for low temperatures the Fermi-Dirac
distribution takes on a particularly simple form, with f = 1 for energies less than EF = µ(0) and
f = 0 for larger energies. In essence, the electrons try to pack themselves into the lowest allowed
energy states, but since they limited by the exclusion principle, this means that they completely fill
all states up to the Fermi energy, with no electrons above that energy. Assuming isotropic motion,
so d3p = 4πp2dp, and setting s = 1

2 , we have

dN = f(x, p) d3x dp =

{
8πp2dp d3x/h3, p < pF
0, p > pF ,

where the Fermi momentum pF for nonrelativistic particles is given by

p2F
2me

= EF .

We can now write down an expression for the the electron number density:

ne =

∫
d3p f(x, p) =

∫ pF

0

8π

h3
p2 dp =

8π

3h3
p3F ,

so the Fermi momentum pF is determined by the number density:

pF =

(
3h3

8π
ne

)1/3

.

Thus the electron density completely determines both the Fermi momentum and the Fermi
energy for a fully degenerate gas:

EF =

(
3

8π

)2/3 ( h2
me

)
n2/3e .



6.4 Equation of State for Degenerate Matter

Next we need to calculate the pressure of the gas. Let’s start by deriving a general expression
for the pressure of a gas described by an isotropic distribution function. This applies to classical
particles, relativistic particles, and quantum particles.

(Figure to come...)

First imagine a particle of momentum p striking a surface at angle θ and reflecting elasti-
cally from it, as illustrated in the above figure. The change in the particle’s momentum, and the
momentum imparted to the surface, is clearly 2p cos θ.

Now imagine a beam of particles of cross-sectional area δA, number density n, speed v, and
momentum p hitting the surface. The rate at which particles strike the surface is nvδA. The
projected area on the surface over which they strike is δA/ cos θ. Hence the total momentum
imparted to the surface per unit area per unit time (i.e. the pressure due to these particles) is

d2psurf
dt dA

= (2p cos θ) (nv cos θ) = 2nvp cos2 θ.

If the particles are drawn from an isotropic distribution, the fraction of particles moving in this
particular direction, into solid angle dΩ = sin θdθdφ is just dΩ/4π. Integrating over all angles that
intersect the surface, we get

d2psurf
dt dA

=
1

4π

∫ π/2

0
dθ

∫ 2π

0
dφ 2nvp cos2 θ sin θ =

1

3
nvp.

Finally, including the distribution function, so n = f(p)dp, and integrating over momenta p, we
obtain a general expression for the pressure (momentum per unit area per unit time):

P =
1

3

∫
f(p) v(p) p dp.

This general expression reduces to the pressures we have already seen in the different circum-
stances discussed previously:

1. For an ideal nonrelativistic gas described by a Maxwell-Boltzmann distribution, with v(p) =
p/m, we recover the thermal pressure Pth = nkT .

2. For radiation, with v = c and p = E/c, integrating over the blackbody distribution gives
Prad = 1

3aT
4.

For a degenerate quantum electron gas, the pressure is

Pe =
1

3

∫ pF

0
f(p) v(p) p dp

=
1

3

∫ pF

0

8π

h3
p4

me
dp

=
8π

3h3me

p5F
5

=

(
3

8π

)2/3 h2

5me
n5/3e .



We can relate ne to the density ρ by writing the mass density is accounted for by a single element
of atomic number Z and mass number A, so ne = Z(ρ/Amp) and we have

Pe =

(
3

π

)2/3 h2

20mem
5/2
p

(
Z

A

)5/3

ρ5/3.

This pressure has nothing to do with temperature, and is independent of the normal thermal
pressure we normally associate with a gas.

Let’s compare thermal and degenerate electron pressure for conditions in white dwarfs. A
typical white dwarf has ρ ∼ 109 kg/m3 and Z/A ∼ 0.5. The electron degeneracy pressure is then
Pe ∼ 3× 1021 Pa. The thermal pressure due to nuclei (electrons would produce a similar number)
for T = 107 K is Pth = nnkT ∼ 2× 1019 Pa� Pe, so electron degeneracy pressure dominates.

6.5 Electron Degeneracy in Stellar Evolution

Electron degeneracy pressure plays multiple critical roles in determining the outcome of stellar evo-
lution (see slides6.2/18). Under the right circumstances, electron degeneracy pressure can intervene
to prevent every major evolutionary stage:

1. For masses less than about 0.08M�, electron degeneracy can support the hydrogen core of
a would-be star before the temperature reaches the ∼ 107 K needed to fuse hydrogen. Such
low-mass failed stars are called brown dwarfs.

2. For masses less than about 0.25M�, electron degeneracy pressure will support the helium
core of a red giant before helium fusion can start. The helium white dwarfs resulting from this
process are currently not observed, because no 0.25M� star has ever left the main sequence.

3. For masses less than about 8M�, electron degeneracy will support the carbon-oxygen core of
a asymptotic giant branch star before further fusion can occur, resulting in a carbon-oxygen
white dwarf.

4. For masses less than about 12M�, electron degeneracy will support the oxygen-neon core of
a asymptotic giant branch star before further fusion can occur, resulting in a neon-oxygen
white dwarf.

6.6 White Dwarf Mass-Radius Relation

See Maoz §4.2.3
Last time we saw how, under conditions of high density, electron degeneracy pressure can dominate
“normal” thermal pressure. We can use the scaling relations to explore how this new equation of
state affects the structure of these stars. Combining the relations

P ∼ M2

R4

ρ ∼ M

R3

P ∼ ρ5/3 ∼ M5/3

R5

we find
R ∼ M−1/3.



Thus, more massive white dwarfs are smaller. Plugging in the neglected numbers, we find

Rwd ∼
h2

20mem
5/3
p G

(
Z

A

)5/3

M−1/3

Rwd ≈ 2.3× 104 km

(
Z

A

)5/3( M

M�

)−1/3

,

where the coefficient in the final expression is the result of a more accurate calculation taking the
structure of the dwarf properly into account.

6.7 The Chandrasekhar Mass

See Maoz §4.2.3
As the mass increases, the white dwarf shrinks and electron momenta increase, eventually becoming
relativistic. If we repeat our earlier calculation of the pressure, but now setting v = c instead of
v = p/me, we obtain

Pe =
1

3

∫ pF

0
f(p) v p dp

=
1

3

∫ pF

0

8π

h3
cp3 dp

=
8πc

3h3
p4F
4

=

(
3

8π

)1/3 hc

4
n4/3e .

Again writing ne = Z(ρ/Amp), we can write this in terms of the density:

Pe =

(
3

8π

)1/3 hc

4m
4/3
p

(
Z

A

)4/3

ρ4/3.

Note that me does not appear explicitly, which is reasonable as we have assumed mec
2 � pc.

This new equation of state presents a problem. If we set P ∼ ρ4/3 in the above structure
relations, we find that the radius disappears from the mass-radius relation. We can be more
systematic, and imagine an equation of state P ∼ ρ(4+ε)/3, where ε = 1 in the nonrelativistic
regime and decreases to 1 as the star becomes relativistic. Using this expression for P , we find

R ∼ M (ε−2)/3ε,

so R→ 0 as ε→ 0. In other words, the star becomes unstable as it becomes relativistic. Electron
degeneracy pressure can no longer support it against gravity. The maximum mass that the star can
have before it becomes relativistic and unstable is known as the Chandrasekhar mass, Mch, after
the Nobel Prize winning Indian-American astrophysicist Subrahmanyan Chandrasekhar, who first
derived this limit.

Using the virial theorem PV = 1
3Egr, writing Egr ∼ GM2/R, ρ = M/V , V = 4

3πR
3, and using

the above relativistic expression for P , we find that R cancels and

Mch ∼ 0.11

(
Z

A

)2( hc

Gm2
p

)3/2

mp.



A more precise calculation, taking the structure of the star properly into account, replaces the 0.22
by 0.21. Plugging in the numbers for Z/A = 0.5, appropriate for a C or CO white dwarf, we obtain

Mch = 1.4M�.

6.8 Degenerate Burning

Stars much more massive than the Sun start to fuse helium into carbon more or less uneventfully in
their cores. However, in stars of masses between 0.25M� and about 2M�, the core is significantly
degenerate when helium fusion begins, meaning that electron degeneracy contributes a large fraction
of the total pressure. Since electron degeneracy pressure is independent of temperature, which
creates an unstable situation.

The onset of a new nuclear burning stage releases large amounts of energy into the core, raising
the temperature. If the pressure were thermal, Pth = (ρ/m̄)kT , the rising temperature would
cause the pressure to increase, causing the core to expand a little and stabilizing the burning
(recall that the nuclear burning rates depend very sensitively on temperature). In a degenerate
(or nearly degenerate) gas, the rising temperature is not offset by a large rise in pressure, so the
compensating effect of thermal pressure is greatly reduced. As a result, the core does not expand
and the temperature is not stabilized. Instead, the temperature and burning rates rise in a runaway
process called the helium flash. The process lasts only a few seconds, but during that time nuclear
emissivity may be billions of times higher than normal, and a large amount of energy is dumped
into the core.

After the helium flash the temperature has risen to the point where degeneracy pressure is no
longer important, the density is lower, and helium is burning non-degenerately at the center. The
star jumps from the top of the giant branch to the horizontal branch, and the evolution continues
as described earlier. The energy released by the flash is not seen from outside. Instead, it is used
up in expanding the core and lifting the degeneracy.

Degenerate burning can also occur in white dwarfs, where it can have much more catastrophic
consequences. When a white dwarf is pushed over the Chandrasekhar mass it starts to collapse,
heats up, and undergoes degenerate carbon fusion (see the simulation on the course web page). The
star may be pushed over the limit by accretion from a companion in a binary, or two white dwarfs
may collide (for example, as their orbit decays by gravitational radiation emission, see HW5).
Nuclear burning an a degenerate gas is unstable, and in this case the entire star explodes once
the burning starts. As illustrated in slides6.2/28, the burning starts near the center, where the
temperature is highest, and the hot burning region then rises to the surface, after which it engulfs
the entire star. The result is called a Type Ia supernova. Its peak luminosity is more than a billion
times that of the Sun (see slides6.2/24). Over its several-month lifetime, it will radiate away over
1044 J of energy—more than the Sun will generate over its entire 10 billion year lifetime. There
is some debate about whether the process leaves a remnant behind. Most sources seem to think
not, but a vocal minority claim that a neutron star (see below) may result. Slides6.2/25 shows an
example of what remains after the supernova is over.

6.9 High-Mass Stars

See week 7 notes.


