
PHYS 231 Lecture Notes – Week 3

Reading from Maoz (2nd edition):

• Chapter 2, Sec. 3.1, 3.2

A lot of the material presented in class this week is well covered in Maoz, and we simply reference
the book, with additional comments and derivations as needed. References to slides on the web
page are in the format “slidesx.y/nn,” where x is week, y is lecture, and nn is slide number.

3.1 Atoms and Radiation

Before moving on, let’s look a little more on the interactions between matter and radiation, and
the resulting emission and absorption spectra we see. This section goes considerably beyond the
syllabus of the course, but it is intended to give some flavor of how emission and absorption
processes at the atomic level relate to the large-scale radiation field in a star. We Consider a
system in thermal equilibrium at temperature T . That means that all aspects of all atoms and ions
— speeds, internal excitation state, and ionization state — are all determined by T . Now consider,
as above, an idealized two-level atom, with levels 1 and 2, with E2 > E1, in that environment.

3.1.1 Emission

Let’s first consider the atom’s emission. An atom in the excited 2 state, left to its own devices, will
eventually spontaneously emit a photon and drop to the lower 1 state, where E2−E1 = E21 = hν0,
the frequency associated with the transition. The probability per unit time of such an occurrence
is the Einstein coefficient A21 for the two levels. it is a quantum-mechanical property of the atom,
and can in principle be calculated for any given system. The emission is isotropic, and we can
easily write down an expression for the resulting emissivity (unit W m−3 ster−1):

jν = hν A21 n2 φ(ν)/4π.

Here, hν0 is the line energy (J), A21 is the transition probability per unit time (s−1), n2 is the
density of atoms in the upper state (m−3), and the final 4π means that jν is emission per steradian.
The dimensionless factor φ(ν) is the line profile — a delta-function spike for an idealized line, but in
reality a sharply peaked, but broadened, function centered on ν0, with

∫
φ(ν)dν = 1. This process

gives rise to the emission lines we see.
Notice that observations of emission lines from different transitions in the same gas (for example,

the hydrogen lines Hα and Hβ) can provide accurate information on the gas temperature. Let’s
compare emission lines from the 2 − 1 and the i − k transitions in the same atom. Temporarily
ignoring the line profiles, the ratio of the line strengths is

j21
jik

=
E21

Eik

A21

Aik

n2
ni

=

(
E21

Eik

A21

Aik

)
e−(E2−Ei)/kT ,

where we have assumed thermodynamic equilibrium in the second equation. The factors in paren-
thesis are “atomic,” or quantum mechanical, and hence in principle known. Thus, relative emission
line strengths provide another accurate means of determining the temperature of stellar gas. Similar
considerations apply to absorption lines.

1



3.1.2 Absorption

Now let’s turn to absorption lines. Our two-level atom can interact with an incoming photon in
two ways: (1) it may absorb the photon and move from the lower 1 state to the upper 2 state, or
(2) an atom in the upper 2 state may drop to the lower 1 state and emit another photon identical
to the first. The first transition is what we usually think of as absorption; the second is called
stimulated emission. Both are occurring in stars. In the presence of a radiation field of energy
density (per frequency interval) uν , the probability per unit time of an atom in the lower state
absorbing a photon and jumping to the upper state is B12uν . The probability per unit time of
the reverse transition is B21uν . The Bij are more Einstein coefficients, again characteristic of the
atom, not the radiation field.

Thus, if n1 and n2 are the number densities of atoms in the lower and upper states, respectively,
and taking all radiative processes into account, we can write down a simple differential equation
for the rate of change of n2:

dn2
dt

= −A21n2 +B12uνn1 −B21uνn2.

Once again, thermodynamic equilibrium simplifies things a lot, and provides us with an important
connection between the Einstein coefficients. The above equation is true in all cases, and in par-
ticular in the case of thermodynamic equilibrium, where the left-hand side is zero, uν is given by
the Planck expression

uν =
4π

c
Bν =

8πhν3

c3

(
ehν/kT − 1

)−1
≡ Uν

(
ehν/kT − 1

)−1
,

and n1 and n2 are related by the Boltzmann formula

n2
n1

=
g2
g1
e−hν/kT .

Thus

A21
g2
g1
n1e

−hν/kT = B12uνn1 −B21uν
g2
g1
n1e

−hν/kT

⇒ A21g2
(
ehν/kT − 1

)
= B12Uνg1e

hν/kT −B21Uνg2.

This latter relation must be true for any temperature T , so looking separately at the temperature-
dependent and temperature-independent terms, we must have

A21

B21
= Uν

B21

B12
=

g1
g2
.

Thus, as a ray of light of intensity Iν passes through distance δx of the medium, the combination
of the two absorption (“B”) terms changes the intensity by an amount

δIν = −hνφ(ν)

c
(n1B12 − n2B21) Iνδx,

where φ(ν) is the line profile centered on hν0, as before. Using the above equations to write
everything in terms of A21, and after a little algebra, we find

δIν = −ανIνδx,
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where

αν =
c2

8πν2
g2
g1
n1A21φ(ν)

(
1− e−hν/kT

)
is the absorption coefficient.

Note also that, through the same arguments, we must also have

jν
αν

= Bν .

3.2 Radiation Transfer in Stars

Setting aside the nitty gritty details of the previous section, we can say that, as a beam of light
of intensity Iν passes through medium, we can say that the intensity changes due to emission and
absorption according to the transfer equation

dIν
dx

= −ανIν + jν .

The quantities jν and αν contain all necessary information about emission and absorption processes
in the medium. Both are functions of density, temperature, composition, and frequency, and both,
in general, are very complex. Note in particular from the preceding discussion that both are
proportional to the local density of the medium. It is common to write

jν = ενρ

αν = κνρ,

where εν and κν are, respectively, the emissivity and the opacity of the gas.

3.2.1 Cross Sections

The absorption coefficient αν depends on the local density, and may be written αν = κνρ, where
κν contains a collection of quantum-mechanical and statistical factors that describe the detailed
physics of the interaction. Alternatively, we can write αν in terms of the local number density
n. As we have just seen, αν has a dimension of inverse length (1/`ν). Factoring out the number
density, the dimension of the other factor is length squared — an area. Thus we can also write

αν = nσν ,

where σν is called the cross-section for the physical process of interest. In effect, it defines the area
an absorber presents to the incoming radiation field for the given process to occur, and encapsulates
the essential physics into a single number.

Cross sections give us a convenient geometric means of quantifying interaction rates. Imagine
that atoms actually have some small area that they present to the radiation. A photon striking
that area interacts with the atom; otherwise, no interaction occurs. We can easily calculate the
probability of an interaction, as follows. Imagine again a beam of light of intensity Iν moving
through a medium of number density n and cross-section σ. Photons pass through a volume of
area A perpendicular to the beam and length δx along the beam (see Maoz Fig. 3.2 and surrounding
discussion). The total number of atoms in this volume Aδx is nAδx, and the total area they present
to the beam is Aint = nσAδx. Thus, as seen by photons moving through the volume, the fraction
of the area filled by interacting atoms, and hence the probability of an interaction, is

δP =
Aint
A

=
nσνAδx

A
= nσνδx,
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and the above relation follows.
The bottom line is that the absorption coefficient α can be rewritten in terms of the cross

sections for various contributing physical processes:

αν =
∑
i

niσi,ν = κνρ

Remember: opacity and cross-sections are just different ways of expressing the same thing.

3.2.2 Mean Free Path

We won’t solve the transfer equation in detail, but we can use it to draw some important gen-
eral conclusions about radiation in stars. Let’s focus first on radiation moving through a purely
absorbing medium (jν = 0), so the transfer equation simplifies to

dIν
dx

= −ανIν .

We can easily solve this by writing

dIν
Iν

= −ανdx
so

Iν = Iν0 e
−
∫
ανdx

= Iν0 e
−τν .

The incoming beam is simply attenuated as it moves through the medium. The quantity

τν =

∫
ανdx

which determines the amount of attenuation is called the optical depth.
As a rule of thumb, we can think of a photon as moving through the medium until τ ∼ 1, at

which point it is absorbed and subsequently re-emitted. The mean free path `ν is the distance
the photon travels before this occurs. In a uniform medium, αν is constant with respect to x, so
τν = αν`ν and

`ν =
1

αν
.

Now consider an optically thin medium, in which absorption may be neglected. In that case,
the transfer equation is even simpler:

dIν
dx

= jν ,

and the solution is

Iν =

∫
jν dx.

In general, optically thin media are expected to produce emission lines (see the discussion of Kirch-
hoff’s laws in week 2).
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3.2.3 Limb Darkening and Stellar Absorption Lines

In the deep interior of the Sun, the opacity is so high that photons are effectively reabsorbed very
close to where they were emitted, and light is effectively trapped. Put another way, the optical
depth from any given location to the surface is very large, τν � 1. We will discuss in more detail
in a moment how solar energy works its way outward to the surface. Eventually, however, near the
surface, both the opacity and the distance a photon must travel to escape decrease, and eventually
we reach a point where the optical depth to the surface equals 1 — a photon has a good chance of
escaping without further interaction with solar matter. The light we see therefore comes from the
part of the Sun lying above the depth Rp, where∫ R�

Rp
αν(r) dr ≈ 1.

This region is called the photosphere, and given conditions in the outer layers of the Sun, it is about
500 km deep, much less than the radius of the Sun, which is why the Sun (in visible light, at least)
appears to have a very sharp edge.

How deep we see into the Sun depends on the angle between our line of sight and the radial
direction at the solar surface. Imagine for simplicity that αν is constant, α. Then if we look
straight down, we see down to a depth ` = 1/α (see slides3.1/13). However, if we look at an angle
θ to the radial direction, the light we see started closer to the surface, at depth ` cos θ. Since the
temperature decreases with radius, we effectively see a cooler part of the Sun when we observe at
an oblique angle, and the Sun looks darker. This phenomenon, called limb darkening is evident in
slides3.1/12.

In addition, because αν depends on frequency, Rp does too, so the depth we can see also depends
on the wavelength of the radiation. Near the center of an absorption line, where αν is greatest, `ν
is least; conversely, near the edge, αν is smaller and `ν is larger (see slides3.1/14)). Thus the light
we see in different parts of the line actually comes from different parts of the star. In particular,
at line center we are seeing higher, cooler parts of the star, which is the real reason why the center
is darker than the edges.

3.3 Free-Fall Time

See Maoz §3.1.

3.4 Hydrostatic Equilibrium

See Maoz §3.1.
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