
PHYS 231 Lecture Notes – Week 2

Reading from Maoz (2nd edition):

• Chapter 2

I provide here expanded coverage of material covered in class but not fully discussed in the Maoz
text. For material covered in the text, I’ll mostly just give some generalities and a reference.
References to slides on the web page are in the format “slidesx.y/nn,” where x is week, y is lecture,
and nn is slide number.

2.1 Fluxes and Filters

No detector can cover the entire electromagnetic spectrum, so the flux obtained by integrating over
all frequencies or wavelengths (called the bolometric flux) is not really measurable. Fortunately
in many cases most of the energy is emitted in the range of a single instrument, so the Stefan-
Boltzmann law quoted above is still approximately correct if we use the detected flux rather than
the total one.

In fact, rather than always obtaining detailed spectra of stars, astronomers often find it conve-
nient to measure the light received through a number of standard filters attached to the telescope
(see for example slides 2.1/9 and 10). The principal reason for doing this is that it is much faster
to observe an object through a small number of broad-band filters than it is to split the light up
into hundreds or thousands of wavelength bins to obtain a complete spectrum. Astronomers do
work with detailed spectra, but taking such a spectrum of every star is impractical.

Each of the filters shown on the slides effectively defines a slice of the spectrum. Their names
describe roughly the color of light they transmit—B is blue, V is the middle of the visible spectrum,
R is red, U is ultraviolet, etc. These days many instruments have their own custom designed filters,
so the terminology is not universal, but conversions between the different filter sets can easily be
made.

Let’s say we are looking at a star through the V filter. Then the flux we observe is really

fV =

∫
V (λ)fλ dλ

so the integral is not really from 0 to ∞ any more, because of the filter. Similarly, we talk about
V luminosity, LV , etc. The inverse-square law continues to hold:

fV (D) =
LV

4πD2
.

Filters are useful because they let us quantify the color of a source. Imagine again a blackbody
spectrum. Because the spectrum depends on just 1 parameter – the temperature T—you should be
able to convince yourself that if I measure the fluxes at two wavelengths, the ratio of those fluxes
will uniquely determine T . A star with a lot more blue flux than red flux is hotter than one with
more red than blue. Astronomers do essentially the same thing with filters to define stellar colors.

But there’s a operational catch. Astronomers generally don’t work directly with fluxes. In-
stead, they express stellar brightness in terms of an ancient construct called the magnitude scale.
Everything we just said still applies, but we need to define some terminology first.
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2.2 Magnitudes and Colors

Ancient astronomers didn’t measure stellar fluxes—the technology to do that only became available
in the 19th century. Instead, following the system invented by the Greek astronomer Hipparchus,
they ranked the several thousand stars visible with the naked eye by brightness, and that ranking
was called the star’s magnitude. First magnitude stars were the brightest, sixth magnitude stars
the faintest visible.

When astronomers finally became able to quantify fluxes, they found that (i) the magnitude
scale is logarithmic—an increase of one magnitude corresponds to a decrease in flux by a constant
factor, and (ii) first magnitude stars are about 100 times brighter than sixth magnitude stars.
The modern magnitude scale retains the ranking, the logarithmic scaling, and this calibration, and
defines the magnitude of a star (in the V band, say) as

mV = −2.5 log10 fV + constant,

where the constant is a normalization such that certain standard stars have specific magnitudes.
For example, the star Vega was originally defined to have a V magnitude of 0.0 (the scale has shifted
since, so Vega now has mV = 0.03). The brightest star in the sky is Sirius, with mV = −1.47.

In practice, the constant often is unimportant, since we are usually interested in ratios of fluxes,
corresponding to differences in magnitudes, so the constant cancels. A better definition of the scale
is that if two stars have fluxes (in some filter) f1 and f2 and magnitudes m1 and m2, then we can
say

m2 −m1 = −2.5 log10

(
f2
f1

)
.

Some more terminology. It is very common in observational astronomy to denote the magnitude
in the X band (mX) simply as X, so V is the same as mV , B is mB, etc. We mentioned earlier
that the ratio of fluxes at two wavelengths is sufficient to determine the temperature, and hence
the color of a blackbody spectrum. Following that reasoning, since a ratio of fluxes is a difference
in magnitudes, the color of an astronomical object is the the difference in its magnitudes through
two different filters, e.g.

B − V = mV −mB = − 2.5 log10

(
fB
fV

)
.

Many colors can be defined, and different choices may be very useful in different circumstances,
but some common ones are B − V,U −B, V − I, and their equivalents in other filter schemes.

Just remember, B and V are fluxes, and B − V is a color. For a perfect blackbody, B − V is
equivalent to temperature, and the same is approximately true for real stars too. Note that, since
color is a difference in magnitudes, or a ratio of fluxes, it is independent of the distance to the
source.

Finally, since the magnitudes we have just described are really fluxes, or apparent brightness,
they are generally referred to as apparent magnitudes. Astronomers also express luminosities using
magnitudes, as follows. If we imagined seeing all stars at a standard distance away, then their
light would all be diminished by the same amount by the inverse square law, and so the fluxes
we measured would be proportional to the luminosities. Astronomers conventionally choose that
standard distance to be 10 pc. There is no particular reason for that choice—it is completely
arbitrary. The apparent magnitude of a star seen at a distance of 10 pc is called its absolute
magnitude. Absolute magnitude, usually denoted MV in the V band, is equivalent to luminosity.

2



Comparing apparent and absolute (V) magnitudes for a star at distance D, we have

mV −MV = −2.5 log10

([
LV

4πD2

]/ [ LV
4π(10pc2)

])
= 2.5 log10

(
D

10pc

)2

= 5 log10D(pc)− 5.

This is the inverse square law expressed in magnitudes. The quantity on the left hand side is often
referred to as a star’s distance modulus.

2.3 The Color–Magnitude Diagram

Now that we can measure magnitudes and colors for stars, we can begin to look for correlations
among them. The result is a color–magnitude diagram (CMD), several of which are shown in slides
2.1/52–55. The horizontal axis is color, the vertical axis is apparent magnitude. For most of the
examples shown in class, the color is B− V , which is equivalent to temperature increasing right to
left, and the diagram is plotted for stars in star clusters, so apparent magnitude is equivalent to
luminosity, so the plot can equivalently be viewed as plotting the fundamental stellar parameters
T and L. With the latter axes, the diagram is called a Hertzsprung–Russell (H–R) diagram, after
the two astronomers who first made such plots about a century ago. H–R diagrams are widely used
by theorists in discussions of stellar structure and evolution. CMDs are what observers actually
measure.

Note that stars aren’t distributed randomly across these diagrams. Most (about 90 percent) lie
on a broad band running from the upper left (bright and blue) to the lower left (faint and red). This
region is called the main sequence and (as we will see) it is where stars lie when they first begin to
fuse hydrogen in their cores. Many main sequence stars have measured masses, using the techniques
described earlier. We find that the main sequence is first and foremost a mass sequence—the most
massive stars are at the top, the lowest-mass stars at the bottom. Indeed, if all stars had identical
composition, the main sequence would be a narrow line stretching across the H-R diagram. The
observed spread in the sequence is due primarily to composition differences.

The rest of the diagram is not empty. There is a sequence of bright red stars at top right and
another group of faint blue-white stars at lower left. Using the relation L ∝ R2T 4 described earlier,
we can estimate stellar radii, as indicated in slide 2.2/45, and these estimates explain the names
for these groups of stars. The bright red stars are called red giants, and the faint blue-white stars
are white dwarfs.

All this structure in the H-R diagram means that we have something to explain. The theories
of stellar structure and evolution are how we will do that.

2.4 Mass and Luminosity

We can get a basic understanding of why stars must evolve—change their properties in a systematic
way as time goes on—from a very simple argument. When we plot stellar luminosities against stellar
masses, we find a clear mass–luminosity relation (slides2.1/56 and 57). As discussed in class, the
details depend on the interior structure of the star, but over a broad range of masses we have a
simple scaling

L ∝M4.
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Now let’s ask why stars shine. What is responsible for the luminosity we see? The answer is that
main sequence stars are fusing hydrogen into helium in their cores, and the energy released ulti-
mately leaves the surface as visible light. Stars are converting mass into energy, and the luminosity
we see is proportional to the rate at which mass is being consumed.

In this simple view, a star is fuel for nuclear fusion. When a significant amount of the mass of
the star has been consumed (actually, about 10 percent), the star has effectively run out of fuel
and something new has to happen. Again, that something is what stellar evolution theory is all
about. Dividing the amount of fuel (M) by the rate of consumption (L) and not worrying about
the many details, we can define a stellar main sequence lifetime

tMS ∼ M

L

∼ M

M4

∼ M−3.

Thus, not only can we say (i) stars must evolve in time, but (ii) the most massive ones evolve
fastest! We’ll see later that the main-sequence lifetime of the Sun is about 10 billion years, so we
can write, approximately,

tMS(M) ≈ 1010
(
M

M�

)−3

yr.

2.5 Cluster Distances and Ages

We can use observations of color-magnitude diagrams to determine both the distances to and the
ages of star clusters. Star clusters are important to astronomers because the stars all lie in the
same relatively small region of space and hence essentially at the distance from us, and all formed
at almost the same time out of the same material, and so have virtually the same composition.
This makes them ideal laboratories for studying stellar physics.

Imagine we have two CMDs: (1) an observed cluster CMD, with apparent magnitude on the
vertical scale (slides2.2/7), and (2) a “standard” CMD showing a well defined main sequence
(slides2.2/8), obtained from theoretical models calibrated against many local cluster observations
and having absolute magnitude on the vertical scale. Both have color on the horizontal axis. If we
assume that the theoretical model is a good description of the observed cluster, the only freedom
we have is to choose the distance, which amounts to sliding one diagram vertically up or down until
it matches the other (slides2.2/9). (Remember that the color is a ratio of fluxes and is therefore
independent of distance.) Since

m−M = 5 log10D (pc)− 5

we can easily determine D by this process.
Note that this is a statistical generalization of the standard candle idea. Instead of choosing

one star, assuming it is on the main sequence, and using that information to determine distance,
by matching the full main sequences we are effectively obtaining a best-fit distance for the entire
cluster.

Once we know the distance we can also estimate the age. Recall our earlier discussion of
the mass-luminosity relation, where we concluded that stars must evolve, and that a star’s main-
sequence lifetime is

tMS(M) ≈ 1010
(
M

M�

)−3

years.
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This means that the top of the main sequence “peels off” as high-mass stars turn into something
else. We can readily identify the most massive star still on the main sequence. This is a so-called
main sequence turn-off, and represents the star whose main-sequence lifetime corresponds to the
present age of the cluster. We can determine the turn-off just by looking at the CMD and, once we
have calibrated to find D, we can read its absolute magnitude from the vertical scale, then convert
that to a luminosity (knowing the absolute V magnitude of the Sun is 4.8), and then use the mass
radius luminosity to get a mass and hence an age.

Note that there is one caveat in this process. Many clusters contain stars known as blue
stragglers, which lie on the main sequence above where the turnoff should be, and hence appear to
be younger than the rest of the cluster. You can see several in the Hyades and M3 CMDs in the
slides (slides2.2/7 and 10). In the absence of other information, knowing which stars to ignore can
be something of an art. In the case of the Hyades, the upturn in the theoretical models at the top
of the main sequence represents the true turnoff, and should be used in age estimations.

2.6 Stellar Spectra

We haven’t talked at all yet about spectral lines in the Sun and other stars. Clearly the nice clean
blackbody spectra we were discussing previously are substantially altered in reality by spectral lines
— see slides2.2/12. All of the spectra in that figure shoe prominent absorption lines, although the
lines themselves vary a lot from star to star. The Sun, which we can observe in great detail has
thousands of dark Fraunhofer lines in its spectrum.

2.6.1 Emission and Absorption Lines

It will take us too far afield to go into detail on atomic structure and spectral lines, but let’s take
a few moments to review what you should already know from other physics courses. It has been
known for some 200 years that when gases are heated they produce an emission spectrum of sharp
spectral lines whose colors are characteristic of the material (slides2.2/13,16). Furthermore, when a
continuous spectrum like a blackbody passes through a cool sample of the same gas, an absorption
spectrum is seen, with dark lines at the same locations as the bright lines in the emission spectrum
(slides2.2/15). These connections are summarized in Kirchhoff’s laws, which are illustrated in
slides2.2/17:

• A hot, dense solid, liquid or gas produces a continuous spectrum.

• A hot, low-density gas produces a bright-line or emission spectrum.

• When a source of a continuous spectrum is viewed through a cool gas, a dark-line or absorption
spectrum is seen.

Thus, long before anyone knew any atomic physics, spectroscopists were aware that emission and
absorption lines must have the same underlying physical cause, and that they represented a unique
“fingerprint,” allowing them to identify elements and molecules in the light from distant objects
(like stars). With the development of quantum physics and its application to atomic structure in
the early 20th century, scientists finally understood the origin of spectral lines and the connection
between them. Briefly, electrons in atoms can exist only in certain well-defined energy states (Ei,
say), and when the atom shifts between one state (i) and another (j) it can do so by emitting or
absorbing a photon of energy corresponding precisely to the energy difference:

hν = |Ej − Ei|.
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Since the energy levels are quantized, the photon energies are too, so the origin of and connection
between emission and absorption spectra is clear. Slides2.2/20 illustrates the connection between
the well-known Bohr model of the hydrogen atom and the line spectrum of hydrogen.

2.6.2 Stellar Spectral Classification

Now back to observed stellar spectra. By the end of the 19th century astronomers had amassed tens
of thousands of stellar spectra, and had begin to classify stars according to the lines they observed.
Indeed, one well-known element — helium — was discovered spectroscopically on the Sun (hence
the name, from the Greek helios) before it was found on Earth. Since no-one knew the origin of the
lines, the classification basically assumed that the strengths of the lines indicated the composition
of the star. Stars were assigned spectral types A, B, C,... based primarily on the strengths of the
visible hydrogen lines (the Balmer sequence in slides2.2/20), with additional criteria based on other
atomic and molecular spectral features.

Once the structure of the atom was understood, it became clear that the differences among
stars were due primarily to temperature (see below), not to composition. Stars all have basically
the same composition (91% hydrogen, 9% helium; see slides2.2/21), although small but important
composition differences do exist. Several of the spectral classes were discarded, and the remainder,
now ranked in order of decreasing temperature, are listed in slides2.2/23,25. From hot to cool, the
standard spectral classes are O, B, A, F, G, K, M (Oh Be A Fine Guy/Girl, Kiss Me is the standard
mnemonic). This terminology is widely used throughout astronomy, which is the main reason to
mention it here, even though spectral types are no longer used as a primary means of quantifying
stellar properties. We could go through the entire course without ever mentioning what an O star
is, but all astronomers know that O and B stars are hot, bright, blue, and short-lived, while K and
M stars are the opposite. The Sun, by the way, is of type G2 (the 2 is part of a decimal subdivision
of the letter types, where 0–9 represent decreasing temperature).

2.7 Some Thermodynamics and Statistical Mechanics

In order to discuss how stellar spectra depend on temperature, we need to say something about
temperature determines the speeds, excitation levels, and ionization states of atoms in a star. There
are many different physical processes going on, involving collisions among atoms and electrons, and
interactions between matter and radiation. All of these processes transform energy from one form
to another, and in principle trying to follow them all can get very complicated. Fortunately, there
is a huge simplifying assumption we can make — thermodynamic equilibrium.

The idea is that, in a completely closed system, we expect all processes to come into equilibrium,
in the sense that all physical properties of the material — temperature, density, atomic excitation
state, ionization fraction — don’t fluctuate in time. In other words, although atoms are banging
into one another and bumping electrons up and down the atomic energy states, we can assume
that for every process causing a transition from 1 to 2, there is another from 2 to 1, and they are
in balance, meaning that the total numbers of atoms in state 1 or state 2 stay constant. The same
applies to the speeds of atoms in the gas, and to interactions between atoms and radiation. There is
a well-defined temperature T , and this in essence controls the equilibrium of all processes. In fact,
stars are not closed systems — energy is constantly leaking out, and their properties depend on
location in the star — but these deviations deviations from perfect thermodynamic equilibrium are
generally small, and we can assume Local Thermodynamic Equilibrium in discussing the properties
of the gas.
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2.7.1 The Maxwell-Boltzmann Distribution

With this assumption we can use the techniques statistical mechanics to determine the most prob-
able distribution of physical properties. For example, in an ideal classical (non-relativistic) gas
made up of particles (atoms) of mass m, the temperature T may be defined in terms of the mean
kinetic energy of the gas particles:

〈12mv
2〉 = 3

2kT.

Statistical mechanics tells us how the speeds v are distributed. The probability of an atom having
speed v in the range [v, v + δv) is p(v)δv, where

p(v) =

(
m

2πkT

)3/2

4πv2 e−mv
2/2kT .

The first factor simply ensures that
∫
p(v) dv = 1. Even though atoms are bouncing around and

colliding with one another and an individual atom may change its speed billions of time per second,
on average the distribution of speeds stays constant. The above expression is called the Maxwell-
Boltzmann distribution.

Note that since atoms are moving in all directions with many different speeds, the light they
emit or absorb will be Doppler shifted slightly due to their motion relative to an observer. Thus,
for an example, a emission line that is very narrow in the rest frame of an atom will be broadened
due to the thermal motion of the atoms (see slides2.2/27). Since the rms speed is

vrms = 〈v2〉1/2 =

√
3kT

m
,

the line broadening will be on the order of

〈
∆λ

λ

〉
∼ vrms

c
∼

√
3kT

mc2
.

Thus measuring the widths of spectral lines gives us direct information on the temperature of the
gas producing them.

2.7.2 The Boltzmann Formula

Similar reasoning applies to the energy distribution of electrons in atoms. Imagine two electron
states A and B, with E2 > E1 (slides2.2/31). As atoms collide and energy is exchanged, the
electron will be bumped up and down between the states many times, but averaged over many
atoms, statistical mechanics tells us that the ratio of the number of atoms in the upper state, n2
to the number in the lower state, n1 is given by the Boltzmann formula

n2
n1

=
g2
g1
e−(E2−E1)/kT .

Here, g2 and g1 are the degeneracies of the two states, which simply means the number of different
quantum states that have the same energy, or the number of different ways the electron can have that
energy. The degeneracy of states in hydrogen can be directly calculated from quantum mechanics:
gn = 2n2, the n2 coming from all allowed angular momentum states and the 2 from the two spin
states of the electron.

Note that, as T → 0, the exponential term goes to zero and n2 = 0 — in other words, all
atoms are in the lower state. This immediately explains why low-temperature M stars don’t

7



have any hydrogen absorption lines. The visible (Balmer) hydrogen lines correspond to transitions
starting at the first excited state (n = 2; see slides2.2/20). But for such a transition to occur, we
must have some atoms in the n = 2 state. A transition between n = 1 and n = 2 has energy
E21 = E2 − E1 = 10.2 eV. Thus, for this transition,

n2
n1

= 4 e−E21/kT .

For T = 5000 K, this ratio is 2.1 × 10−10, so negligibly many hydrogen atoms are in the excited
state. Increasing T to 10,000 K increases the ratio by a factor of more than 104, to 2.8 × 10−5

— still a small number, but large enough that enough hydrogen is in the excited state to create a
strong line.

2.7.3 The Saha Equation

As T →∞ in the Boltzmann formula, the exponential factor goes to 1, so

n2
n1

=
g2
g1
,

meaning that, in the absence of other effects, all states would be populated according to their
degeneracy. However, as the temperature increases, it becomes more and more likely that the atom
will be ionized.

An atom (or ion) becomes ionized then a bound electron gains enough energy to escape. This
can occur radiatively (via the absorption of a photon) or collisionally (when two atoms run into
one another). The reverse process is called recombination, where an electron and an ion encounter
one another, lose some energy in the form of a photon, and become bound. This is a reversible
process:

Xi ←→ Xi+1 + e,

where Xi represents the i-th ionization state of element X. Spectroscopists often use the notation
XI (roman numeral I to refer to the neutral atom, XII the singly ionized atom, etc., so some
concrete examples might be

OI ←→ OII + e

NII ←→ NIII + e

HI ←→ HII + e.

In ionization equilibrium, the forward and backward rates are equal, and statistical mechanics tells
us that the number densities of state i, state i+ 1, and electrons must satisfy the Saha equation

ni+1ne
ni

=
2

Λ3

gi+1

gi
e−

χ
i/kT .

Here, gi is the degeneracy of ionization state i, χ is the energy needed to ionize state i to state
i+ 1, and

Λ =

(
h2

2πmekT

)1/2

is a length — in fact, the de Broglie wavelength of an electron. For typical “stellar” temperatures,

Λ = 7.5× 10−10 m

(
T

104 K

)−1/2

.
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Let’s focus on the ionization state of hydrogen. Let the total number density of hydrogen nuclei
(atoms plus protons), hydrogen atoms, protons, and electrons be n, nH , np, and ne, respectively,
and define the ionization fraction as

X =
np
n
.

Clearly, n = nh + np and, if all electrons were produced by ionization of hydrogen (not a bad
assumption for most stars), ne = np. In that case, gi = 4 (2 proton spin states times 2 electron
spins), gi+1 = 2) (2 proton spin states), and the Saha equation becomes (with nH = (1−X)n)

X2

1−X
=

1

nΛ3
e−

χ/kT ,

where χ = 13.6 eV. Thus, although we can’t write down an explicit solution for X in terms of n
and T , once n and T are specified, solving for X is just a matter of solving a quadratic equation

X2 +AX −A = 0,

where A is the right-hand side of the above equation.
Slides2.2/34 shows the solution to this equation as a function of T for a range of choices of

hydrogen density (left to right): n = 106, n = 109, n = 1020, n = 1024, n = 1026, and n = 1028 m−3,
corresponding to densities found in interstellar space, near the solar surface, and in the solar interior.
Note that (unsurprisingly) X increases as T increases, and (less obviously) decreases as n increases,
because recombination is faster at higher densities. For densities typical of the solar interior close to
the surface, X > 0.5 for T > 17000 K. The outer layers of hot O and B stars are almost completely
ionized, which explains why no hydrogen absorption lines are seen — there is no atomic hydrogen
to produce them.

If we simply estimate the temperature T at which the typical atomic energy 3
2kT equals the

ionization energy of hydrogen, 13.6 eV, we find T = 1.5× 105 K, a temperature consistent with the
above discussion of the Boltzmann formula (in that the exponential term is close to 1), but much
hotter than any known star. Why then, is the hydrogen near the solar surface ionized? The answer
is that the ionization fraction is determined by a balance between ionization and recombination. As
the density decreases, recombination becomes less effective, and the equilibrium moves toward full
ionization. In the outer layers of the Sun, ionization occurs due to relatively rare interactions that
lie far out on the high-energy exponential tail of the Maxwell-Boltzmann (or Planck) distribution,
with E � kT , but if recombination is ineffective in opposing this process, they can nevertheless
lead to a large ionization fraction.
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