PHYS 231: Introductory Astrophysics

Winter 2020 Mid-Term Solutions

1. (a) The distance is D = 1/p, or 14.3 pc.

(b) The angular separation is $\theta = a/D$, so $a = D\theta = 10.7$ AU.

(c) Kepler's third law says $P^2 = a^3/M$, where everything is measured in "solar system" units (years, AU, and solar masses). Hence the total mass is $M = a^3/P^2 = 8.5 M_{\odot}$.

(d) The Doppler shift is proportional to radial velocity, so the maximum shift in this case measures the circular orbital speed. Thus, star B is moving 1.5 times faster than star A. Relative to the center of mass, we have $M_A v_A = M_B v_B$ (where v here is speed), so $M_A/M_B = v_B/v_A = 1.5$. Since $M_A + M_B = 5.1 M_{\odot}$, we have $M_A = 5.1 M_{\odot}$, $M_B = 3.4 M_{\odot}$.

(e) For stars on the main sequence, $L \propto M^4$, so $L_A = 691 L_{\odot}$ and $L_B = 136 L_{\odot}$. Their absolute magnitudes then are $\mathcal{M}_A = 4.8 - 2.5 \log_{10}(L_A/L_{\odot}) = -2.3$ and $\mathcal{M}_B = 4.8 - 2.5 \log_{10}(L_B/L_{\odot}) = -0.54$.

(e) The total luminosity is $L_{tot} = 827 L_{\odot}$. At a distance of d = 1 kpc, this implies an apparent magnitude of $m = 4.8 - 2.5 \log_{10}(L_{tot}/L_{\odot}) + 5 \log_{10}(d/10 \text{ pc}) = 7.5$.

- 2. (a) The frequency is $\nu = 1.15 \times 10^{11}$ Hz, so the wavelength is $\lambda = c/\nu = 2.6$ mm.
 - (b) The energy of the emitted photon is $h\nu = 7.6 \times 10^{-23} \text{ J} = 4.8 \times 10^{-4} \text{ eV}.$
 - (c) Radio.

(d) $kT = 2.8 \times 10^{-22} = 3.6 \ h\nu$, so from the Boltzmann formula, $n_2/n_1 = (g_2/g_1) \exp(-h\nu/kT) = 2.28$ and 69% (= 2.28/3.28) of all CO molecules are in the upper state.

(e) Each excited molecule has probability $p = 7.67 \times 10^{-8}$ of emitting a photon of energy $h\nu$ in any given second, so N excited molecules will emit energy at a rate $Nph\nu$ W. For the given number density, a cubic meter will contain 2×10^{-6} molecules, of which 1.4×10^{-6} will be excited. Hence the emission rate is 8.1×10^{-36} Wm⁻³.

- 3. (a) I estimate V-magnitudes $m_A \approx 4.3, m_B \approx 8.5, m_C \approx 10.9$. Thus, B is 2.4 magnitudes brighter than C, which corresponds to a flux ratio of $10^{2.4/2.5} = 9.1$.
 - (b) The mass-radius relation says $\bar{\rho} \propto M/R^3 \propto M^{-1.1}$, so the lowest-mass star, C, is densest.
 - (c) If $m_A = 4.3$ and the distance is D = 135 pc, then the absolute magnitude of A is $4.3 5 \log_{10} 135 + 5 = -1.4$.
 - (d) The luminosity of A relative to the Sun is then $L_A/L_{\odot} = 10^{(4.8-1.4)/2.5} = 290.$
 - (e) The mass of star A is therefore $290^{1/4} = 4.1 M_{\odot}$.
 - (f) The age of the cluster is $10 \text{ Gyr}/4.1^3 = 140 \text{ Myr}$. (The accepted value is about 100 Myr.)