
PHYS 231: Introductory Astrophysics

Winter 2020

Homework #4
(Due: February 19, 2020)

Each problem is worth 20 points.

1. The basic proton-proton fusion reaction in the core of the Sun combines 4 protons to produce
1 helium nucleus, 2 neutrinos (which escape from the Sun), energy in the form of gamma
rays, and 2 positrons, which rapidly combine with nearby electrons to produce more gamma
rays. The mass of a proton is 1.67262 × 10−27 kg, while the mass of a helium-4 nucleus is
6.64465 × 10−27 kg. As discussed in class, the total local heating from 4p → 4He (which
ultimately ends up contributing to the luminosity of the Sun) is 26.21 MeV. Given that the
the luminosity of the Sun is 3.9× 1026 W, use this information to calculate (1) the number of
reactions occurring per second in the core, and the rates, in Earth masses per year, at which
(2) hydrogen is being consumed to form helium, and (3) mass is being converted into energy.

2. Radiation pressure tends to destabilize a star, so we expect that stars in which the radiation
pressure Prad = 1

3aT
4 dominates the thermal gas pressure Pgas = ρkT/m̄ should be unstable.

(a) Use the virial theorem (Maoz Eq. 3.22), with Egr ≈ −GM2/R, to show that the mean
internal pressure in the star is

P ≈
(

4π

81

)1/3

GM2/3ρ4/3,

where ρ = 3M/4πR3.

(b) Show that, if Prad = Pgas, the point at which we expect the star to become unstable, the
total pressure is

P = 2
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)4/3

.

(c) Equate these two pressures to find the mass of the star at the point of instability. Assume
a composition of 71% hydrogen and 29% helium by mass.

3. We can quite easily derive a scaling law for how the nuclear energy generation in a star
scales with temperature. The rationale is simple: If a function f(x) scales locally as xβ, then
d log f/d log x = x d log f/dx = β, so taking the logarithmic derivative is a convenient way of
determining the local power-law scaling.

Throwing away all the complicated looking constant terms (i.e. terms independent of T ),
Eq. 3.134 of Maoz takes on a more manageable form:

ε ∝ T−2/3 e−3(EG/4kT )
1/3
,



where the energy scale EG is defined in Eq. 3.117.

Take the logarithmic derivative of this expression with respect to T to show that the local
scaling is

β =

(
EG
4kT

)1/3

− 2

3
.

Evaluate β at T = 1.5×107 K for the reactions (i) p+p→ d+e++νe and (ii) p+12C →13 N+γ.

4. A horizontal branch star is burning helium in its core. It has a surface temperature of 5000
K and is 15 times larger than the Sun.

(a) What is its luminosity (use the luminosity–temperature–radius relation)?

(b) The triple-alpha reaction fuses 3 helium-4 nuclei into a carbon-12 nucleus, releasing 7.3
MeV of energy in the process. Calculate its efficiency, defined as the total energy released
divided by the total mass-energy of the input reactants (in this case 3mHec

2, where mHe =
6.64× 10−27 kg).

(c) Assume that the core has a mass of 0.5M� and is composed entirely of helium at the start
of this stage. How long would it take for all the helium to be consumed, if the luminosity
stays constant?

5. (a) Eventually, the envelope of the Sun will drift off as a planetary nebula at a speed of
∼ 20 km/s. Suppose an astronomer at Proxima Centauri (distance = 1.3 pc) is watching the
sun during its final death throes. How big would the Sun’s planetary nebula be (in angular
diameter) after 1000 years?

(b) A white dwarf has mass 0.7M�, radius 10,000 km, and temperature 107 K. Estimate
its mean density, thermal pressure, surface gravitational acceleration, and electron degen-
eracy pressure. Compare the degeneracy pressure to the thermal pressure for pure carbon
composition.


