
PHYS 305: Computational Physics II

Winter 2022

Homework #1
(Due: January 18, 2022)

Each problem is worth 10 points. Upload your solutions to Learn with a title including PHYS 305
and the Homework number. The PDF upload should contain all discussion, results, and graphs

requested, and files containing Python scripts for all programs written.

1. (a) Write a script to compute the derivative of the function f(x) = x2 e−x at the point x0 = 3,
using both the one-sided

f (1)p =
f(x0 + δx)− f(x0)

δx

and centered

f (2)p =
f(x0 + δx)− f(x0 − δx)

2δx

approximations. As in class, compare the errors made by the two methods by plotting

e(1) = |f (1)p − f ′(x0)|

and
e(2) = |f (2)p − f ′(x0)|

against δx on a clearly labeled log–log plot, for δx = 2−n, with n = 1, 2, 3, . . . 50.

(b) Now explore how the derivative can be obtained by extrapolating the numerical results

to δx = 0. Evaluate f
(2)
p for δx = 0.1, 0.05, and 0.025, and save the result in a numpy array

deriv. Use the numpy polyfit function to fit the array as a quadratic in δx (also saved as
an array) of the form

p(2)(δx) = p0 δx
2 + p1 δx+ p2.

The array of coefficients p is returned by the polyfit call:

p = polyfit(dx, deriv, 2)

Print out the coefficients pi and hence determine the extrapolated derivative for δx = 0 and
its difference from the true value. How does this error compare with the error obtained using
δx = 0.025?

(c) Repeat part (b) using a cubic fit to the points obtained with δx = 0.1, 0.05, 0.025, and 0.0125.



2. (a) Write a script that computes

I =

∫ 2

0
x cosx dx

using (i) the basic integration scheme described in class, (ii) the trapezoid rule, and (iii)
Simpson’s rule (see Numerical Recipes, Sec. 4.1, 4.3 for details). Evaluate the integral using
each scheme with N intervals between x = 0 and x = 2, for N = 4, 8, 16, . . . 220, and plot the
errors versus δx = 2/N on a log–log plot.

(b) Evaluate the integral using the trapezoid rule for N = 4, 8, 16, and 32, fit the result with a
cubic polynomial in δx, as in question 1(c), and hence determine the extrapolated integral for
δx = 0. Calculate the error in the extrapolated result and compare it with the error obtained
using δx = 1/16.

3. (a) A particle moves in an almost inverse-square potential with

φ(r) = − GM

(r2 + ε2)1/2
,

where GM = 1 and ε = 0.1. Following the development in class, we can write

E = 1
2(v2r + v2t ) + φ(r)

L = rvt

so

E = 1
2v

2
r +

L2

2r2
+ φ(r)

v2r = 2[E − φ(r)]− L2

r2
.

(i) Use bisection (see Numerical Recipes, Sec. 9.1) or a built-in Python root finder to de-
termine the two turning points of the orbit—that is, the values r = r± where v2r = 0—for
E = −0.5 and L = 0.5.

(ii) The period of the orbit is

P = 2

∫ r+

r−

dr

vr
.

Note that the integrand is (integrably) singular at the end points, making a Newton–Cotes-
rule like trapezoid unusable without modification. Near r±, v2r goes linearly to zero, so we
can write v−1r = (r − r−)−1/2(r+ − r)−1/2f(r), where the function

f(r) = 2
(r − r−)1/2(r+ − r)1/2

vr

is regular and positive over the entire range.

As discussed in class, the Gauss–Chebyshev quadrature formula is designed to handle inte-
grands with precisely this behavior. Evaluate the integral using the quadrature

P ≈
n−1∑
i=0

wi f(ri)



with n = 10 points, where

ri =
r+ + r−

2
+
r+ − r−

2
xi

xi = cos

[
(2i+ 1)π

2n

]
wi =

π

n
,

for i = 0, . . . n− 1 (see Numerical Recipes, Sec. 4.5 and the file gaus cheb.py on the course
web site).

(b) Repeat the calculation for the case ε = 0, with the same E and L as in part (a), and
compare your answer to the Newtonian result

P = 2πGM (−2E)−3/2.


