Matrix Cheat Sheet

Vectors and Linear Transformations

A **vector space** *V* is a set of things called **basis vectors** and some rules for making linear combinations of them:

ax+by is a vector if x, y are vectors and a,b are numbers.

A **linear transformation** *L* is a map from one vector space to another that obeys the superposition principle:

$$L(a\mathbf{x}+b\mathbf{y}) = aL\mathbf{x} + bL\mathbf{y}$$

Every linear transformation can be represented by a matrix acting on a column vector and vice versa. This is important.

An **inner product** $\langle \mathbf{x} | \mathbf{y} \rangle$ maps two vectors to a number. The usual example is $x_1^* y_1 + x_2^* y_2 + \cdots$ but others exist. The inner product of a vector with itself defines a **norm**.

Unitary / Orthogonal

Unitary matrices obey $U^{-1}=U^{\dagger}$. Real unitary matrices are **orthogonal**. *U* **matrices preserve the usual inner product:** $\langle U\mathbf{x}|U\mathbf{y}\rangle = \langle \mathbf{x}|\mathbf{y}\rangle$. Each eigenvalue of U and the determinant of U must have complex magnitude 1.

The columns of U form an orthonormal basis for V (and so do the rows) if and only if U is unitary. Two matrices L and M are similar if $M = ULU^{-1}$ for some unitary U.

Every rotation and/or parity transformation between two orthonormal bases is represented by a $\it U$ and vice versa.

Matrix Arithmetic

To multiply two matrices *AB*, do this: $[AB]_{ij} = \sum_{k} A_{ik} B_{kj}$ (Note: a column vector is just a $n \times 1$ matrix.)

 $(AB)\mathbf{x}$ produces the same vector as "do B, then do A to \mathbf{x} ."

Matrices add component-wise, and $(A + B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}$.

To **transpose** M, swap its rows and columns: $[M^T]_{ij} = M_{ji}$ An **(anti) symmetric** matrix equals its (minus) transpose.

The **adjoint** of M is its conjugate transpose: $[M^{\dagger}]_{ij} = M_{ji}^*$. Adjoint matrices obey the rule $\langle \mathbf{x}|M\mathbf{y}\rangle = \langle M^{\dagger}\mathbf{x}|\mathbf{y}\rangle$.

The **inverse** M^{-1} has determinant (det[M])⁻¹ if det[M] \neq 0. A **singular** matrix has determinant 0 and can't be inverted.

Transposes, adjoints and inverses obey a "backwards" rule: $(AB)^{-1}=B^{-1}A^{-1} \quad (AB)^T=B^TA^T \quad (AB)^\dagger=B^\dagger A^\dagger$

Hermitian / Symmetric

Hermitian matrices are **self-adjoint**: $H^{\dagger}=H$. Real symmetric square matrices are Hermitian.

Eigenvalues of *H* **are real (but might be degenerate!). Eigenvectors of** *H* **form an orthogonal basis for** *V.*(Eigenvectors corresponding to the same eigenvalue are not unique, but it is always possible to choose orthogonal ones.)

A real linear combination of Hermitian matrices is Hermitian.

Eigensystems and the Spectral Theorem

A normal matrix N satisfies $NN^{\dagger}=N^{\dagger}N$. Every normal matrix is similar to a diagonal matrix: $N=UDU^{-1}$ where D is diagonal. Elements of D are eigenvalues and columns of U are eigenvectors of N. If N is Hermitian, then U is unitary. \mathbf{v}_{j} is an eigenvector of N with eigenvalue λ_{j} if and only if $N\mathbf{v}_{j}=\lambda_{j}\mathbf{v}_{j}$. The (complex) phase of an eigenvector is arbitrary.

The **spectrum** of N (the set of its eigenvalues) can be found by solving $det[N-\lambda 1]=0$, the **characteristic polynomial** of N. The product of all eigenvalues of N is det[N] and the sum of eigenvalues is tr[N], the **trace** of N (the sum of its diagonal elements). Two similar matrices L and M have the same spectrum, determinant, and trace (but the converse is not true).

Misc. Terminology

A matrix P is **idempotent** if PP = P. An idempotent Hermitian matrix is a **projection**. A **positive-definite** matrix has only positive real eigenvalues. Z is **nilpotent** if $Z^n = \theta$ for some number n. The **commutator** of L and L is L, L, L is L, L is L in L in

Matrix Exponentials

The **exponential map** of a matrix ${\pmb M}$ is ${\rm EXP}[M]=1+M+\frac{1}{2!}M^2+\cdots+\frac{1}{k!}M^k+\cdots$. The solution to the differential equation $\frac{d}{dt}{\bf x}(t)=M{\bf x}(t)$ is ${\bf x}(t)={\rm EXP}[Mt]\cdot{\bf x}(0)$. EXP has some, but not all, of the properties of the function e^x :

 $\begin{array}{ll} \text{in general:} & (e^M)^{-1} = e^{-M} & (e^M)^T = e^{M^T} & (e^M)^\dagger = e^{M^\dagger} & e^{(a+b)M} = e^{aM}e^{bM} & \det[e^M] = e^{\operatorname{tr}[M]} \\ \text{only if M and N commute:} & e^{M+N} = e^Me^N & e^NMe^{-N} = M & \text{only if N is invertible:} & e^{NMN^{-1}} = Ne^MN^{-1}. \end{array}$