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The Legendre transform is a trick for representing a function in terms of its first derivative.
It is simple to define and widely used in physics and applied sciences. Despite its popularity,
it is often presented in a haphazard way. While mathematically rigorous descriptions are
arguably unnecessary for many applications, some caution is necessary to avoid serious errors
in practice. A few common sources of confusion are:

• failing to clearly state the necessary existence/uniqueness conditions,

• using notation which confuses numbers with functions, and

• misinterpreting the somewhat-ambiguous formula px− f(x).

The author has committed each of these errors. The second error is especially popular with
physicists. The symbol y(x) is often used to represent both “the function y()” and “the
value of y at x.” This abuse of notation is usually harmless, but it can be dangerous when
change-of-variable techniques are used. Here I will use y to mean a number, y() to mean a
function, and y(x) to mean “the output of y() when given x as an input.”

After completing nearly all of this article, I discovered a recently-published paper called
Making Sense of the Legendre Transform which presents many of the same ideas. I found it
generally clear and helpful, so I have listed it as a reference.[1]

1 Existence/uniqueness conditions for a Legendre transform

Suppose all of the following statements are true:

1. A well-behaved function f() is defined over some chunk D of the real line.

2. For any x ∈ D, you know how to find f(x) and d
dx
f(x), which I will call f ′(x).

3. The graph of f(x) always curves upward: for any x ∈ D, f ′′(x) > 0.2

1To view a copy of this license (CC BY 3.0), visit http://creativecommons.org/licenses/by/3.0/ or send
a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

2If f ′′(x) < 0 always, then define a new function f̃() = −f() and Legendre transform f̃() instead.
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Condition 1 is deliberately vague; what do “well-behaved” and “chunk” mean? The point is:
when using functions that fail common tests (e.g. continuity, non-singularity, smoothness),
be careful. A more rigorous treatment than the one provided here may be necessary.

Condition 2 simply requires that an explicit formula for f(x) is known, its derivative can be
found either by hand or by computer, and that derivative is also well-behaved.

Condition 3 is not always stated explicitly, but it should be. Legendre transformations behave
very badly if the curvature of f() changes sign as x changes. (If f ′′(x) fails to exist at some
points, see the subsection “Convex functions and convex sets.”)

Suppose that instead of using x as a variable, you would prefer a new variable p such that
p(x) = f ′(x). The Legendre transform produces a formula, in terms of p, for a new function
g(). The transform is invertible, so knowing g(p) tells you everything about f(x).

2 Geometric interpretation of the Legendre transform

Plot f(x). At each point, imagine a line tangent to the plot. This line intersects (x, f(x)) and
has slope p = f ′(x). Any straight line with slope p must look like this for some g ∈ R:

y(x) = px− g

Here g means “the negative y-intercept of the line tangent to f() at the point (x, f(x)).” (We
could have defined g to be the positive y-intercept, but that’s not the usual convention.)

Since f ′′(x) > 0 everywhere, there is only one tangent line for each possible slope p. Draw
pictures to convince yourself that if a function always curves upward, it can’t have two
tangent lines with the same slope. Here are two examples: f(x) = x2 and f(x) = x log(x).
For each plot, f(x) is in black and several tangent lines to f() are shown in color.3

For each possible slope p, there is exactly one tangent line. That tangent line has its y-
intercept at y = −g(p). We want to find the function g() that maps p’s to g’s.

The really useful thing about g() is this: each point (x, f(x)), has exactly one “evil twin”
point (p, g(p)). Knowing g() then gives us complete information about the f() and vice versa.
(See the subsection “Convex functions and convex sets” for weird exceptions.)

3f(x) = x log(x) behaves badly when x ≤ 0, so I’ve shown it only on the domain D = (0,∞).
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Given a slope p, define x(p) to be the value of x such that f ′(x) = p.4 The negative-y-intercept
of the tangent line with slope p is found by setting px− g = f(x).

The recipe for the Legendre transform is:

0. Check that f() satisfies the existence/uniqueness conditions.

1. Define a new function p() such that p(x) = f ′(x). Invert p() and call the result x().

2. Define g to be the negative of the y-intercept of the line tangent to f() at x:

g = p(x) · x− f(x)

3. Use the formula for x(p) to write the x’s as functions of p. Call the result g(p).

g(p) = p · x(p)− f(x(p))

Just be careful to remember what x(p) means: it is the value of x at which the slope of f ′()
is f ′(x) = p. Otherwise this equation won’t make any sense.

3 Examples of Legendre transforms

3.1 Example #1: f(x) = x2 with x ∈ R

0. f() is well-behaved, f ′() is well-behaved, and f ′′() > 0.

1. Define p(x) = f ′(x) = 2x. Invert this to find x(p): p = 2x⇔ x = 1
2
p

2. Define g = p(x) · x− f(x): g = 2x · x− x2 = x2

3. Use x(p) = 1
2
p to write the x’s as functions of p: g(p) = (1

2
p)2 = 1

4
p2

The Legendre transform is f(x) = x2 ⇔ g(p) = 1
4
p2.

3.2 Example #2: f(x) = x log(x) with x ∈ R and x > 0

0. If x > 0, then f() is well-behaved, f ′() is well-behaved, and f ′′() > 0.

1. Define p(x) = f ′(x) = log(x) + 1. Invert this to find x(p).

p = log(x) + 1 ⇔ log(x) = p− 1 ⇔ x = ep−1

2. Define g = p(x) · x− f(x).

g = (log(x) + 1)x− x log(x) = x

3. Use x(p) = ep−1 to write the x’s as functions of p.

g(p) = ep−1

The Legendre transform is f(x) = x log(x) ⇔ g(p) = ep−1.

4Equivalently, x() is the inverse function of f ′(). The domain of x() is S = { all possible slopes p}. See
the subsection “Legendre-transforms as inverse-derivative pairs” for details.
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3.3 Physics example: Hamiltonian of a 360◦ pendulum

Imagine a pendulum made of a very light, rigid rod of length R with a dense, point-like
blob of mass m on one end. The other end is attached to a ball bearing which allows the
pendulum to rotate 360◦ in a vertical plane. Define θ to be the angle between the rod and
a vertical line and set θ = 0 when the blob is at maximum height. Choose positive θ to be
clockwise or counter-clockwise.5 Ignore friction but don’t ignore gravity.

The (approximate) gravitational potential energy of this object is V = mgy = mgR(cos θ).
The (approximate) rotational kinetic energy is K = 1

2
Iω2 = 1

2
mR2ω2, where ω is the pendu-

lum’s angular velocity. The Lagrangian describing the system is L = K − V .

L(θ, ω) = K − V =
1

2
mR2ω2 −mgR(cos θ)

The Hamiltonian of this system is found by Legendre-transforming L to remove the variable
ω. (The variable θ comes along for the ride. For our purposes, θ can be thought of as a
constant during the Legendre-transform process.) First, define p(ω) = L′(ω):

p(ω) = L′(ω) = mR2ω

Is L′′(ω) > 0 for all ω? Since L′′(ω) = mR2 and m > 0, it is. Note that p has a physical
interpretation as the pendulum’s angular momentum mR2ω = Iω.

Now invert p(ω) to find ω(p) = p
mR2 . Define g = p(ω) · ω − L(ω) as usual, use ω(p) to write

everything in terms of p’s, and call the result g(p):

g(p) =
p2

mR2
− 1

2
mR2

( p

mR2

)2

+mgR(cos θ) =
p2

2mR2
+mgR(cos θ)

Remembering that θ is not really a constant, we should call it g(θ, p). Also, traditional
notation uses H and L instead of g and p for “Hamiltonian” and “angular momentum.”

H(θ, L) =
L2

2mR2
+mgR(cos θ)

This is the pendulum’s Hamiltonian function. It has a physical interpretation as the total (ki-
netic + potential) energy of the pendulum in terms of angular position and momentum.

In most simple physical systems like this one, using a Legendre transform to find the particle’s
Hamiltonian seems like extra work for no clear benefit; why not just write H = K + V in
the first place? For many practical calculations, this is an excellent criticism. The method
is primarily important for providing a theoretical motivation for quantum mechanics.6

5I choose these coordinates so that the Lagrangian does not depend on the sign of θ.
6If you want to sound very technical, tell people “the Legendre transform of a Lagrangian function

constructs an invertible map between solutions of an n-dimensional second-order equation of motion and a
flow on a 2n-dimensional symplectic manifold,” or something like that.
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3.4 Thermodynamic potentials

A thermodynamic system can be completely described by its internal energy function U(S, V,N).
Here U is internal energy, S is entropy, V is volume, and N is particle number. The partial
derivatives of U(S, V,N) have names suggestive of their usual physical interpretations. They
are neatly summarized in the fundamental thermodynamic relation:

dU = TdS − PdV + µdN

where T, P, and µ are called temperature, pressure, and chemical potential.

One problem with this description is that entropomometers, if such things exist, are hard
to find. Temperature-measuring devices are much more convenient. We’d like to use T as a
variable instead of S, but first we should check if ∂2

∂S2U(S, V,N) > 0.

T =

(
∂U

∂S

)
V,N

(
∂2U

∂S2

)
V,N

=

(
∂T

∂S

)
V,N

=

(
∂S

∂T

)−1

V,N

> 0

which is the physically plausible claim that raising the temperature of a thermodynamic
system while holding everything else but U constant will increase its entropy.

Once T (S) is found, invert it to find S(T ). Legendre-transform U(S, V,N) to produce

TS(T )− U(S(T ), V,N)

The Helmholtz energy A(T, V,N) of a system is conventionally defined to be −1 times the
Legendre transform of U(S, V,N) with S removed in favor of T = ∂U/∂S.7

A(T, V,N) = U(S(T ), V,N)− T · S(T )

The other variables V,N can be Legendre-transformed as well. Suppose we don’t mind S,
but V annoys us and we prefer to use P as a variable in our thermodynamic potential. We’ll
need to check that U(S, V,N) is concave-up for V :

P = −
(
∂U

∂V

)
S,N

(
∂2U

∂V 2

)
S,N

= −
(
∂P

∂V

)
S,N

> 0

which another physically plausible claim: increasing volume decreases pressure, all other
things being equal. Inverting this to find V (P ), we can now define

H(S, P,N) = U(S, V (P ), N) + P · V (P )

The + before P · V (P ) is a side effect of defining P with the wrong sign and multiplying
everything by an overall factor of −1.8 (By convention, the enthalpy H(S, P,N) is actually
−1 times the V -Legendre transform of U(S, V,N).)

7A is for Arbeit, which is German for “work.” The letter F , for “Free energy,” is also popularly used.
8We could have defined P = ∂U

∂V , but that would be the negative of what we intuitively associate with the
word “pressure.” Perhaps it should be called “vacuosity.”
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If we can S-Legendre-transform U and V -Legendre-transform U , can we do both? Yes, and
the result, including the usual minus sign conventions, is called the Gibbs free energy.

G(T, P,N) = U(S(T ), V (P ), N)− T · S(T ) + P · V (P )

We can continue in this fashion by replacing N with µ to form the Landau potential (a.k.a.
grand potential or Φ potential). A relatively easy-to-remember shorthand is:

A = U − TS H = U + PV G = U − TS + PV Φ = U − TS + PV − µN

Performing these transformations for realistic internal energy functions can be rather time-
consuming and mistake-prone, which is why I have not included explicit examples.

4 Technical details

4.1 Legendre transforms as inverse-derivative pairs

Another way to define the Legendre transform is “the function whose derivative is the inverse
function of f ′().” This definition is not very geometric, but it suggests a useful idea:

To “undo” a Legendre transform f(x)→ g(p), Legendre transform g(p) again to get f(x).

More precisely, the Legendre transform can be thought of as an operator L̂ that maps
functions to other functions: L̂f() = g(). It turns out to be its own inverse operator:
L̂(L̂f()) = L̂2f() = 1̂f() = f(). The invertibility of L̂ is essential to its value as a method
for changing representations without destroying information. I won’t rigorously prove these
claims, but try twice-Legendre-transforming some of the examples to get the idea.

For this new inverse-derivative definition to make any sense, the inverse function of f ′() must
exist. First, assume f ′() exists on a domain D. (If not, there’s no purpose attempting a
Legendre transform!) Define the slope set S of f() as the range of f ′():

S = { p | f ′(x) = p for some x ∈ D}

S is the set of all possible slopes of tangent lines to f(). By definition, f ′() is onto S. If f ′()
is also one-to-one on D, then f ′() : D → S is invertible. If f ′() is not one-to-one, then “the
inverse function of f ′()” will be ambiguous.

We assume f ′′(x) > 0 for all x ∈ D, so f ′() is monotonically increasing on D, so f ′() must be
one-to-one.9 Then there exists x() : S → D which outputs exactly one x-value in D for each
slope p ∈ S. The Legendre transform L̂f() = g() is the unique function such that:

1. g′() and f ′() are each other’s inverse function: g′(f ′(x)) = x and f ′(g′(p)) = p.

2. f(x) + g(p(x)) = xp(x) for all x ∈ D.

9The subsection “Convex functions and convex sets” covers exceptions for when f ′′() does not exist.
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To show that this new definition is equivalent to the original, define p(x) = f ′(x) and x(p)
in the same way as before. Find g′(p) by using the chain rule:

g′(p) =
d

dp

[
p · x(p)− f

(
x(p)

)]
= x(p) + p · x′(p)− f ′

(
x(p)

)
· x′(p)

By definition p(x) = f ′(x), so f ′(x(p)) is just p(x(p)) = p. The only term in g′(p) that does
not cancel is x(p), so g′(p) = x(p). This means g′() must be the inverse of p() = f ′().

I’ve assumed that x′(p) exists. To check, use the reciprocity relation dx
dy

=
(

dy
dx

)−1
:

x′(p) =

∣∣∣∣
p

dx

dp
=

∣∣∣∣
x(p)

(
dp

dx

)−1

=
(
f ′′(x(p))

)−1

which is bad if f ′′(x) = 0 for some x ∈ D, but I’ve assumed that f ′′(x) > 0.

Defining g() as “the function whose derivative is the inverse function of f ′()” is not as
geometrically-motivated as the previous tangent-line-intercept definition. However, it does
draw attention to an important geometric feature of Legendre transforms.

Specifically, the condition “f ′() must be monotonically increasing” is equivalent to “f() can-
not have two different points with the same slope.”10 Two examples are shown below:

Left: f(x) = x3 − 10x with domain R. Right: f(x) = x3 − 10x restricted to R > 0.

If f(x) = x3−10x, then f ′(x) = 3x2−10 and f ′′(x) = 6x. This function has f ′′(x) ≤ 0 for any
x ≤ 0. The difficulty is shown graphically: the red and blue tangent lines at x = ±2 have the
same slope p = 2. Consequently x(p) is ambiguous: does x(2) = 2 or does x(2) = −2?

Graphically, f() changes curvature from negative to positive as it passes through x = 0.
Imagine a particle moving from left to right and visualize a tangent line to f() at the location
of the particle. The tangent line’s slope p goes from positive to negative, then “changes its
mind” and becomes positive again. Continuity of f ′() forces the line to repeat previous
p-values, which ruins the invertibility of f ′().

The picture on the right restricts the domain of f() to positive numbers. This restricted
version of f() has positive curvature everywhere, so no two tangent lines have the same
slope. Consequently p() = f ′() is monotonically increasing, its inverse function x() can be
defined, and a Legendre transform can be safely performed.

10A monotonically decreasing f ′() is also acceptable. An equivalent condition is f ′′() < 0 for all x ∈ D,
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4.2 Convex functions and convex sets

A function f() is convex if for all w1 ∈ [0, 1] and w2 = (1− w1),

f(w1x1 + w2x2) ≤ w1f(x1) + w2f(x2)

In words, f() of a weighted average of x1, x2 is, at most, a weighted average of f(x1) and
f(x2) using the same weights. I prefer to remember the definition this way:

f(weighted average of x’s) ≤ weighted average of f(x)’s

A convex combination of n numbers x1, x2, . . . , xn is any number of the form:

w1x1 + w2x2 + · · ·+ wnxn such that all wk ≥ 0 and
∑

wk = 1

A linear combination is convex if its coefficients are non-negative and sum to 1. Convex
combinations can be thought of as weighted averages with weights {wk}.

As an example, consider investing money in one of two bank accounts. Each will return
f(r, t) = ert times your investment after t days, but the interest rates r1, r2 are random real
numbers. Another bank offers to figure out these rates and pay you er̄t where r̄ is the average
rate 1

2
(r1 + r2). To keep the arithmetic simple, we’ll consider only two strategies:

1. Deposit all your money in the r̄ account.

2. Deposit half your money in the r1 account and half in the r2 account.

The first strategy pays A1(t) = e
1
2

(r1+r2)t and the second strategy pays A2(t) = 1
2
(er1t + er2t).

Because f(r, t) is convex in r, the first strategy is never better. Here’s a quick proof:

A2(t)− A1(t) =
1

2
(er1t + er2t)− e

1
2

(r1+r2)t =
1

2

(
e

1
2
r1t − e

1
2
r2t
)2

≥ 0

Convex functions are related to convex sets. Given a function f(), define Ftop to be all the
points “above” f(): Ftop = {(x, y) | y ≥ f(x)}. Ftop is convex if and only if f() is convex.
A set S is convex if for any two points r1, r2 ∈ S, the line segment connecting r1 to r2 is
contained within S. Loosely speaking, this means convex sets have no dents in them.

The shaded areas above show Ftop for f(x) = x2 on the left and f(x) = x3−10x on the right.
f(x) = x3 − 10x is not convex, and its Ftop has a big dent in it. If I choose e.g. (−4, 0) and
(2, 0) as r1 and r2, the line connecting them strays outside the shaded region.
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A Legendre transform can be defined for any convex function in the following way:

g(p) = maxx [px− f(x)]

where maxx[] means “maximum possible value as x varies but p is held constant.” The domain
of p must be restricted to values such that g(p) is finite; g() is undefined elsewhere.

If f() is differentiable on its domain D, we can find maxx[px − f(x)] by taking the partial
derivative ∂

∂x
(px− f(x)) and setting it equal to zero: p− f ′(x) = 0. Since f() is convex, we

know that p() has an inverse function x(). That leads to our original definition:

g(p) = p · x(p)− f(x(p)) p(x) = f ′(x)

If f ′′(x) > 0, then f() is convex. The converse is not true because convex functions are
not necessarily differentiable. A convex function defined on an open interval of R is always
continuous and almost differentiable on that interval, which means the number of points
at which f ′(x) fails to exist is either finite or countably infinite. For example,

Bucket(x) = {−2x− 1 if x < −1, 1 if − 1 ≤ x ≤ 1, 2x− 1 if x > 1}

Bucket() is continuous and almost differentiable. (The derivative fails at exactly two points,
x = ±1.) Its slope set has only three elements: S = {−2, 0, 2}. The Legendre transform of
Bucket() need only be defined for p ∈ S. At these p-values, maxx[px− f(x)] is

g(p) = maxx[px− f(x)] = {1 if p = ±2, −1 if p = 0}

Geometrically, this means “f() has slopes p ∈ {−2, 0, 2}. When p = 2 or −2, the negative
y-intercept of the tangent line is 1. When p = 0, the negative y-intercept is -1.”

Bucket() and its Ftop set are shown on the left with its tangent lines on the right. At x = ±1,
there are no tangent lines. However, continuity of Bucket() tells us its values at these “bad”
points: Bucket(-1) = Bucket(1) = 1. Any convex function can be re-constructed from its
tangent lines in a similar way, which shows the central idea of Legendre transforms:

All information about a convex function is stored in the y-intercepts of its tangent lines.
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