
PHYS 631: General Relativity
Homework #4

Prakash Gautam

May 16, 2019

1. (Schutz 6.29) In polar coordinates, calculate the Riemann curvature tensor of the sphere of unit radius
whose metric is gθθ = r2, gφφ = r2 sin2 θ, gθφ = 0.
Solution:
The metric for polar coordinate on the surface of unit sphere is[

1 0
0 sin2 θ

]
The christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The only non zero derivative of metric is with respect to θ so we get

Γθ
φφ =

1

2
gθθ (−gφφ,θ) = −1

2
sin 2θ

Similarly the other non zero Christoffel symbols are

Γφ
θφ = Γφ

φθ =
cos θ

sin θ

And the Riemann tensor is given by

Rα
βµν = Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ − Γα

βµ,ν
+ Γα

βν,µ

Rαβµν = gαλ

(
Γλ
σµΓ

σ
βν − Γλ

σνΓ
σ
βµ − Γλ

βµ,ν
+ Γλ

βν,µ

)
Calculating

Rφθφθ = gφφ

(
Γφ
σφΓ

σ
θθ − Γφ

σθΓ
σ
θφ − Γφ

θφ,θ
+ Γφ

θθ,φ

)
= sin2 θ

(
Γφ
σφΓ

σ
θθ − Γφ

σθΓ
σ
θφ − Γφ

θφ,θ
+ Γφ

θθ,φ

)
= sin2 θ

(
−Γφ

φθΓ
φ
θφ − Γφ

θφ,θ

)
= sin2 θ

(
−cos2 θ

sin2 θ
+

1

sin2 θ

)
= sin2 θ

Now we can permute the coordinate with the symmetry property to obtain

Rφθθφ = − sin2 θ Rθφφθ = − sin2 θ Rθφθφ = sin2 θ

These are the non zero components of Riemann tensor. �
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2. (Schutz 6.30) Calculate the Riemann curvature tensor of the cylinder.
Solution:
The line element ins the cylindrical coordinate system is

ds2 = dr2 + r2dφ2 + dz2

So the metric in is

gµν =

1 0 0
0 r2 0
0 0 1


The Christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The only non zero derivative of metric is with respect to θ so we get

Γr
φφ =

1

2
grr (−gφφ,r) = −r

Similarly the other non zero Christoffel symbols are

Γφ
rφ = Γφ

φr =
1

r

And the Riemann tensor is given by

Rα
βµν = Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ − Γα

βµ,ν
+ Γα

βν,µ

Rαβµν = gαλ

(
Γλ
σµΓ

σ
βν − Γλ

σνΓ
σ
βµ − Γλ

βµ,ν
+ Γλ

βν,µ

)
Calculating

Rφrφr = gφφ

(
Γφ
σφΓ

σ
rr − Γφ

σrΓ
σ
rφ − Γφ

rφ,r
+ Γφ

rr,φ

)
= r2

(
Γφ
σφΓ

σ
rr − Γφ

σrΓ
σ
rφ − Γφ

rφ,r
+ Γφ

rr,φ

)
= r2

(
−Γφ

φrΓ
φ
rφ − Γφ

rφ,r

)
= r2

(
− 1

r2
+

1

r2

)
= 0

Now we can permute the coordinates and with symmetry all the rest are zero too.

Rφrrφ = 0 Rrφφr = 0 Rrφrφ = 0

So all the components of Riemann tensor are zero, showing that the surface of cylinder is a flat surface. �

3. One way of describing the metric of a flat, homogeneous, expanding universe is:
−1 0 0 0
0 a(t)2 0 0
0 0 a(t)2 0
0 0 0 a(t)2


where a(t) is a function of time only, and the coordinates are

xµ =


t
x
y
z


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(a) Compute all non vanishing terms of the Riemann Tensor.
Solution:

The Christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The only non zero derivative of metric is with respect to t so we get

Γt
xx =

1

2
gtt (−gxx,t) = aȧ

These are true for y and z coordinates.

Γt
yy =

1

2
gtt (−gyy,t) = aȧ Γt

zz =
1

2
gtt (−gzz,t) = aȧ

Similarly the other non zero Christoffel symbols are

Γx
tx = Γx

xt =
ȧ

a

These are also true for y and z.

Γy
ty = Γy

yt =
ȧ

a
Γz

tz = Γz
zt =

ȧ

a

And the Riemann tensor is given by

Rα
βµν = Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ − Γα

βµ,ν
+ Γα

βν,µ

Rαβµν = gαλ

(
Γλ
σµΓ

σ
βν − Γλ

σνΓ
σ
βµ − Γλ

βµ,ν
+ Γλ

βν,µ

)
Calculating

Rxtxt = gxx

(
Γx
σxΓ

σ
tt − Γx

σtΓ
σ
tx − Γx

tx,t + Γx
tt,x

)
= a2

(
Γx
σxΓ

σ
tt − Γx

σtΓ
σ
tx − Γx

tx,t + Γx
tt,x

)
= a2

(
−Γx

xtΓ
x
tx − Γx

tx,t

)
= a2

(
− ȧ2

a2
+

ȧ2

a2
+

ä

a

)
= aä

Now we can permute the coordinate with the symmetry property to obtain

Rxttx = −aä Rtxxt = −aä Rtxtx = aä

Similarly the rest of the values can be calculated as

Ryxxy = −a2ȧ2

The rest of them can be obtained by permuting the index using the (anti-)symmetry property.

Rzxxz = Rzyyz = Ryzzy = Rxzzx = Rxyyx = −a2ȧ

�
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(b) Compute all Non-vanishing terms of the Ricci Tensor.
Solution:
The raised version of Riemann tensor is

Rα
βγµ = gασRσβγµ

The first index non vanishing term is

Rx
ttx = gtt���:0

Rtttx + gxxRxttx + gyy���*0
Ryttx + gzz���:0

Rzttx

= a−2 (−aä) = − ä

a

Using the symmetry property and the elements of metric we get the rest of components of Riemann
tensor as

Rx
ttx = − ä

a
Rx

txt =
ä

a

Ry
tty = − ä

a
Ry

tyt =
ä

a

Rz
ttz = − ä

a
Rz

tzt =
ä

a

Now the components of Ricci tensor in terms of elements of Riemann Rensor are

Rαβ = gµνRν
αµβ

Specifically for Rtt we get

Rtt = gtt�
��>

0
Rt

ttt + gxxRx
txt + gyyRy

tyt + gzzRz
tzt

= −a−2äa− a−2äa− a−2äa

= −3ä/a

Similarly rest of the components can be calculated. They are

Rxx = Ryy = Rzz = aä+ 2ȧ2

These are the components of Ricci tensor �

(c) Compute Einstein Tensor.
Solution:
The components of Einstein tensor are given by

Gµν = Rµν − 1

2
gµνR (1)

The Ricci scalar can be calculated by contracting the Ricci tensor as

R = Rt
t +Rx

x +Ry
y +Rz

z = 6
aä+ ȧ2

a2
(2)

Now the Einstein tensor simply is the substitution (2) into the (1). The first component of this tensor
is

Gtt = Rtt −
1

2
gttR = −3

ä

a
+

1

2

6
(
aä+ ȧ2

)
a2

= 3
ȧ2

a2

Similarly the rest of the components can be calculated.

Gxx = Rxx − 1

2
gxxR = aä+ 2ȧ2 − 1

2
a2 · 6(aä+ ȧ2)

a2
= −2aä− ȧ2
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Gxx = Gyy = Gzz = −2aä− ȧ2

The raised version of Einstein tensor similarly are1.

Gtt =
3

2

ȧ2

a2
Gxx = Gyy = Gzz = − ȧ2 + 2aä

a4

These are the required components of Einstein tensor. �

4. (Schutz 6.35) Compute 20 independent components of Rαβµν for a manifold with line element ds2 =
−e2Φdt2 + e2Λdr2 + r2

(
dθ2 + sin2 θdφ2

)
, where Φ and Λ are arbitrary functions fo the coordinate r alone.

Solution:
Writing down the metric from the given expression for line element

gtt = −e2Φ; grr = e2Λ; gθθ = r2; gφφ = r2 sin2 θ

The inverse metric is

gtt = −e−2Φ; grr = e−2Λ; gθθ =
1

r2
; gφφ =

1

r2 sin2 θ

The Christoffel symbols can be calculated by the expression

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
Evaluating the these we get

Γt
rt = Γt

tr = Φ,r

Γr
φφ = −re−2Λ sin2 θ Γr

tt = −re−2Λ+2ΦΦ,r Γr
rr = Λ,r Γr

θθ = −re−2Λ

Γθ
φφ =

1

2
sin 2θ Γθ

θr = Γθ
rθ =

1

r

Γφ
φr = Γφ

rφ =
1

r
Γφ
θφ = Γφ

φθ =
cos θ

sin θ

The Riemann tensor is given by

Rα
βµν = Γα

βµ,ν
+ Γα

βν,µ
− Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ

Rαβµν = gλα(Γ
λ
βµ,ν

+ Γλ
βν,µ

− Γλ
σµΓ

σ
βν − Γλ

σνΓ
σ
βµ)

Explicitly for Rtrtr we get

Rtrtr = gttR
t
rtr

= −e2Φ
[
Γr
rt,r +�

��*
0

Γr
rr,t + Γr

σrΓ
σ
rr − Γr

σrΓ
σ
rt

]
= −e2Φ [Φ,rr + Γr

rrΓ
r
rr − Γr

rrΓ
r
rt]

= −e2Φ
[
Φ,rr + (Φ,r)

2 − Φ,rΛ,r

]

The rest of the components can be similarly calculated 2

Rtrrt =((Λ,r − Φ,r)Φ,r − Φ,rr) e
2Φ

Rtrtr =(− (Λ,r − Φ,r)Φ,r +Φ,rr) e
2Φ

1This was solved mostly using Cadabra. https://www.physics.drexel.edu/~pgautam/courses/PHYS631/
einstein-tensor-expanding-universe.html

2I did this using Cadabra. The detail of this exercise is at https://www.physics.drexel.edu/~pgautam/courses/PHYS631/
HW4Schutz6.35.html
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Rtφtφ =re−2Λ+2Φsin2 θΦ,r

Rtθtθ =re−2Λ+2ΦΦ,r

Rtφφt =− re−2Λ+2Φsin2 θΦ,r

Rtθθt =− re−2Λ+2ΦΦ,r

Rrφrφ =rsin2 θΛ,r

Rrθrθ =rΛ,r

Rrtrt =(− (Λ,r − Φ,r)Φ,r +Φ,rr) e
2Φ

Rrφφr =− rsin2 θΛ,r

Rrθθr =− rΛ,r

Rrttr =((Λ,r − Φ,r)Φ,r − Φ,rr) e
2Φ

Rθrrθ =− rΛ,r

Rθrθr =rΛ,r

Rθφθφ =
1

2
r2

(
e2Λ sin (2θ) (tan θ)

−1 − 2e2Λ cos (2θ) + cos (2θ)− 1
)
e−2Λ

Rθtθt =re−2Λ+2ΦΦ,r

Rθφφθ =r2
(
1− e2Λ

)
e−2Λsin2 θ

Rθttθ =− re−2Λ+2ΦΦ,r

Rφrrφ =− rsin2 θΛ,r

Rφθθφ =r2
(
1− e2Λ

)
e−2Λsin2 θ

Rφrφr =rsin2 θΛ,r

Rφθφθ =r2
(
e2Λ − 1

)
e−2Λsin2 θ

Rφtφt =re−2Λ+2Φsin2 θΦ,r

Rφttφ =− re−2Λ+2Φsin2 θΦ,r

These are the non zero components of Riemann tensor. �

5. (Schutz 7.7) Consider the following four different metrics, as given by their line elements:

i. ds2 = −dt2 + dx2 + dy2 + dz2 ;
ii. ds2 = − (1− 2M/r) dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θdφ2) where M is a constant.
iii. ds2 = −dt2 + R2(t)

[
(1− kr2)−1dr2 + r2(dθ2 + sin2 θdφ2)

]
, where k is a constant and R(t) is an

arbitrary function of t alone.

(a) For each metric find as many conserved components pα of a freely falling particle’s four momentum
as possible.
Solution:
The rate of change of momentum is given by

m
dpβ
dτ

=
1

2
gµα,βp

νpα

The momentum pβ is conserved when gµα,β = 0. From the given metric the conserved quantities are

for i. : pt, px, py, pz

for ii. : pt, pφ

for iii. : pφ

�
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(b) Write i. in the form

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
From this argue that ii. iii. are spherically symmetric. Does this increase the number of conserved
components of pα?
Solution:
The coordinate transformation from Cartesian to polar is

x = r sin θ cosφ =⇒ dx = sin θ + cosφdr ++r cos θ cosφdθ − r sin θ sinφdφ

y = r sin θ sinφ =⇒ dy = sin θ + sinφdr ++r cos θ sinφdθ + r sin θ cosφdφ

z = r cos θ =⇒ dz cos θdr = − sin θdθ

Substituting these in the line element we get

dl2 =− dt2 + dr2(sin2 θ sin2 φ sin2 θ cos2 φ+ cos2)+

+ dθ2
(
r2 cos2 θ cos2 φ+ r2 cos2 θ cos2 φ+ r2 sin2 θ

)
+ dφ2

(
r2 sin2 θ sin2 φ+ r2 sin2 θ cos2 φ

)
= −dt2 + dr2 + r2

(
dθ2 + sin2 θdφ2

)
This is the required transformation in spherical form. �

(c) It can be shown that for ii. and iii. a geodesic that begins with θ = π
2 and pθ = 0- i.e., one which

begins tangent to the equatorial plane- always has θ = π
2 and pθ = 0. For these cases use the equation

~p ·~p = −m2 to solve for pr in terms of m, other conserved quantities, and known functions of position.
Solution:
Expanding the relation ~p · ~p = −m2 we get

−m2 = gtt
(
pt
)2

+ grr (p
r)

2
+ gθθ

(
pθ
)2

+ gφφ
(
pφ

)2
Given θ = π/2 and pθ = 0 we get

pr =

√
−m2 − gtt (pt)

2
+ gφφ (pφ)

2

grr

Since pt and pφ are conserved substituting the corresponding metric values gαβ gives the quantity pr

for ii.; pr =

√
−m2 + 1−2M

r (pt)
2
+ r2 (pφ)

2

1− 2M/r

for iii.; pr =

√
1− kr2

R2(t)

(
−m2 + (pt)

2
+ (R(t)r)2 (pφ)

2
)

These are the required expression for pr in terms of conserved quantities. �

(d) For iii., spherical symmetry implies that if a geodesic begins with pθ = pφ = 0, these remain zero. Use
this to show that when k = 0, pr is a conserved quantity.
Solution:
The rate of change of momentum is given by

m
dpβ
dτ

=
1

2
gµα,βp

νpα

m
dpr
dτ

=
1

2

(
gtt,r(p

t)2 + grr,r(p
r)2 + gθθ,r(p

θ)2 + gφφ(p
φ)2

)
But for k = 0, grr,r = 0 and gtt,r = 0 and given pθ = pφ = 0 we get

m
dpr
dτ

= 0

This proves that pr is a conserved quantity. �
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6. What fractional energy does a photon lose if it goes from the surface of the earth to deep space?
Solution:
When the photon goes from the surface of earth to outer space, it must lose the gravitational potential
energy that is has near the surface of earth. So the photon must lose this energy. For photon

(U0)2g00 = −1

On surface of earth with weak field limit

g00 = −(1− 2φ)

So near the surface of earth

U0 ' 1 + φ

In far space metric Minkowski g00 = −1 so in far space

U0 = 1

So ratio of energy

1

1 + φ
= 1− φ

So change in energy is ∼ φ On the surface of earth the gravitational potential is

φ = −GM

c2r
= −6.672× 10−11 × 6.0× 1024

6.4× 106 × 9× 1016
≈ 7× 10−10

So the photon must lose this energy fractionally. �
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