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1. (Sakurai 2.33) The propagator in momentum space is given by ⟨p′′, t|p′, t0⟩. Derive an explicit expression
for ⟨p′′, t|p′, t0⟩ for the free particle case.
Solution:
For a free particle the Hamiltonian is

H =
p2

2m

So the time evolution operator for any state in momentum space is given by

U(t) = e
iHt
ℏ ⇒ exp

[
ip2t

2mℏ

]
The base kets evolve over time as

|p′, t⟩ = U(t)† |p′, 0⟩ → ⟨p′, t| = ⟨p′, 0| U(t) = ⟨p′, t0| exp
[
ip2t

2mℏ

]
So the propagator becomes

⟨p′′, t|p′, t0⟩ = ⟨p′′, 0|exp

[
ip′′

2
t

2mℏ

]
exp

[
− ip

′2t0
2mℏ

]
|p′, 0⟩

= exp

[
i

2mℏ
(
p′′2t− p′2t0

)]
⟨p′′, 0|p′, 0⟩

= exp

[
i

2mℏ
(
p′′2t− p′2t0

)]
δ(p′′ − p′)

This gives explicit expression for the propagator of the free particle. □

2. (Skurai 2.37)

(a) Verify [Πi,Πj ] =
(
iℏe
c

)
εijkBk. and m

d2x
dt2 = dΠ

dt = e
[
E+ 1

2c

(
dx
dt ×B−B× dx

dt

)]
Solution:
The kinematical momentum for electromagnetic field is defined as Π ≡ mdx

dt = p− eA
c where A is the

vector magnetic potential is a function of operator x. The commutator then is

[Πi,Πj ] =
[
pi −

e

c
Ai, pj −

e

c
Aj

]
= [pi, pj ]−

[
pi,

e

c
Aj

]
−

[e
c
Ai, pj

]
+
[e
c
Ai,

e

c
Aj

]
= 0− e

c

(
−iℏ∂Aj

∂xi

)
− e

c

(
iℏ
∂Ai

∂xj

)
+ 0

=
iℏe
c

(
∂Aj

∂xi
− ∂Ai

∂xj

)
=
iℏe
c
Bk
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repeating this same process for all the components of this kinematical momentum operator we get

[Πi,Πj ] =
iℏe
c
εijkBk (1)

The Hamiltonian for electromagnetic field id H = Π2

2m + eϕ. For the Lorentz force formula we have

mdx
dt ≡ Π differentiating this with time gives md2x

dt2 = dΠ
dt by using Heisenberg equation of motion we

can write

m
d2xi
dt2

=
dΠi

dt
=

1

iℏ
[Πi, H]

=
1

iℏ

[
Πi,

Π2

2m
+ eϕ

]
=

1

iℏ

[
Πi,

Π2

2m

]
+

1

iℏ

[
pi +

e

c
Ax, eϕ

]
=

1

2miℏ
∑
j

[
Πi,Π

2
j

]
+

1

iℏ
[pi, eϕ]

But the commutator of
[
Πi,Π

2
j

]
= Πr[Πi,Πj ] + [Πi,Πj ]Πr which by use of (1) reduces to

[
Πi,Π

2
j

]
= Πj

iℏe
c
εijkBk +

iℏe
c
εijkBkΠj

And also 1
iℏ [pi, eϕ] =

1
iℏ (−iℏ)

∂eϕ
∂x = −eEi

Using these two facts back in in the original commutator leads to

m
d2xi
dt2

=
1

2miℏ
∑
j

εijkpjBk
iℏe
c

+ εijkBk
iℏe
c
pj − eEi

= e

E +
1

2c

∑
j

(
dxj
dt

Bk −Bj
dxk
dt

)
The above expression can be obtained for each components ij and k to obtain the required relation
in 3D

m
d2x

dt2
=

dΠ

dt
= e

[
E+

1

2c

(
dx

dt
×B−B× dx

dt

)]
This is the required lorentz force relation. □

(b) Verify ∂ρ
∂t +∇′ · j = 0 with j given by j =

(
ℏ
m Im(ψ∗∇′ψ)−

(
e
mc

)
A|ψ|2,

)
Solution:
By definition the probability density function is the absolute value square of waefunction. The Hamil-
tonian for electromagnetic field for arbitrary wavefunction ψ is given by

H =
Π2

2m
+ eϕ =

2

2m

(
p− e

c
A
)2

+ eϕ

The momentum operator in position space wavefunction can be written as−iℏ∇. Using the schrodinger
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equation Hψ = Eψ where operator E is given by E = iℏ ∂
∂t we get

Hψ = iℏ
∂

∂t
ψ

∂ψ

∂t
=

1

iℏ

[
1

2m

(
−iℏ∇− e

c
A
)2

+ eϕ

]
=

1

iℏ

[
−ℏ2

2m
∇2 + iℏ

e

2mc
(∇ ·A+A · ∇) +

e2

2mc2
A2 + eϕ

]
ψ

=
1

iℏ

[
−ℏ2

2m
∇2ψ + iℏ

e

2mc
(∇ · (Aψ) +A · ∇ψ) + e2

2mc2
A2ψ + (eϕ)ψ

]
=

iℏ
2m

∇2ψ +
e

2mc
(∇ ·A)ψ +

e

2mc
A · ∇ψ +

e

2mc
A · ∇ψ +

−i
ℏ

(
e2

2mc2
A2 + eϕ

)
ψ

=
iℏ
2m

∇2ψ +
e

2mc
(∇ ·A)ψ +

e

mc
A · ∇ψ +

−i
ℏ

(
e2

2mc2
A2 + eϕ

)
ψ

Taking the conjugate of this expression leads to

∂ψ∗

∂t
=

−iℏ
2m

∇2ψ∗ +
e

2mc
(∇ ·A)ψ∗ + iℏ

e

mc
A · ∇ψ +

i

ℏ

(
e2

2mc2
A2 + eϕ

)
ψ∗ (2)

Taking the time derivative of the probability density function we get

∂ρ

∂t
=

∂

∂t
=

∂

∂t
(ψ∗ψ) = ψ∗ ∂ψ

∂t
+
∂ψ∗

∂t
ψ

For a divergence free magnetic vector potential (which we can always choose), Multiplying (2) by ψ
and its conjugate by ψ∗ and adding we get

∂ρ

∂t
= ψ∗ iℏ

2m
∇2ψ + ψ∗ e

mc
A · (∇ψ) + ψ

−iℏ
2m

∇2ψ∗ + ψ
e

mc
A · (∇ψ∗)

=
iℏ
2m

[
ψ∗∇2ψ − ψ∇2ψ∗]+ e

mc
(ψA · (∇ψ∗) + ψ∗A · (∇ψ))

=
iℏ
2m

(2i∇ · Im(ψ∗∇ψ) + e

mc
(∇ · (Aψ∗ψ))

= − ℏ
m
∇ · (Im(ψ∗∇ψ)) + e

mc
∇ · (A|ψ|2)

= −∇ ·
(

ℏ
m

Im(ψ∗∇ψ)− e

mc
A|ψ|2

)
= −∇ · j

This completes the proof. □

3. (Sakurai 2.38) Consider a Hamiltonian of the spinless particle of charge e. In presence of a static magnetic
field, the interaction terms can be generated by

Poperator → Poperator −
eA

c
,

where A is the appropirate vector potential. Suppose, for simplicity, the magnetic field B is uniform in
the positive z− direction. Prove that the above presciprition indeed leads to the correct expression for the
interaction of the orbital magnetic moment (e/2mc)L with the magnetic field B. Show that there is also
an extra term proportional to B2(x2 + y2), and comment briefly on its physical significance.

Solution:
Since the electric field is zero we can assign a scalar potential as constant and the constant can always be
chosen 0 thus ϕ = 0. The vector magnetic potential for uniform magnetic field is A = 1

2x×Bẑ. Since there
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is a free choice of vector magnetic potential as long as its curl is divergence free, we chose this potential
which is also divergence free. Thus for this case ∇ ·A = 0.

From (2) we have the hamiltonian of the system is

H = − ℏ2

2m
∇2 +

iℏe
mc

A · ∇+
iℏe
2mc

∇ ·A+
e2

2mc2
A2

Since ∇ ·A = 0 by our choice the interaction operator terms introduced due to the presence of magnetic
potential is

iℏe
mc

A · ∇+
e2

2mc2
A2 = − e

mc
A · (−iℏ∇) +

e2

2mc2
A2

But the operator −iℏ∇ is the momentum operator p and A2 = 1
4B

2
(
x2 + y2

)
This enables us to write the

interaction terms as

− e

mc
B
1

2

(
−ŷi+ x̂j

)
· p+

e2B2

8mc2
(
x2 + y2

)
We can recocnize the term (−ŷi+ x̂j) · p = −yPx + xPy = Lz Substuting this in the above expression we
get

e

2mc
BLz +

e2B2

8mc2
(
x2 + y2

)
So the final hamiltonian becomes

H =

[
− ℏ2

2m
∇2 +

e

2mc
BLz +

e2B2

8mc2
(
x2 + y2

)]
So the interaction terms introduced in the absence of scalar potential but the presence of magnetic potential
has operator for orbital angular momentum e

2mcBLz and a term proportional to B2
(
x2 + y2

)
□

4. (Sakurai 2.39) An electron moves in he presence of a uniform magnetic field in the z-direction (B = Bẑ)

(a) Evaluate [Πx,Πy] where Πx ≡ px − eAx

c
, Πy ≡ py −

eAy

c
.

Solution:

[Πx,Πy] =
[
px − e

c
Ax, py −

e

c
Ay

]
= [px, py]−

[
px,

e

c
Ay

]
−
[e
c
Ai, pj

]
+
[e
c
Ai,

e

c
Aj

]
= 0− e

c

(
−iℏ∂Aj

∂x

)
− e

c

(
iℏ
∂Ax

∂xy

)
+ 0

=
iℏe
c

(
∂Ay

∂x
− ∂Ax

∂y

)
=
iℏe
c
Bz

Which is the required expression for the comutator. □

(b) By comparing the Hamiltonian and the commutation relation obtained in 4 with those of the one-
dimensional oscillator problem, show how we can immediately write the energy eigenvalues as

Ek,n =
ℏ2k3

2m
+

(
|eB|ℏ
mc

)(
n+

1

2

)

Solution:

4



Since the charged particle is only in the magnetic field, the electric field is absent, which means the
electric potential is a constant whiich we may assume to be 0. So the hamiltonian of the system is

H =
Π2

2m
=

Π2
z

2m
+

Π2
y

2m
+

Π2
x

2m

The energy eigenvalue equation for the a general wavefunction ψα(x
′) we have

Hψα(x
′) =

[
Π2

z

2m
+

Π2
y

2m
+

Π2
x

2m

]
ψα(x

′)

Since the magnetic field is completely in ẑ the vector magnetic potential can be written as A(x) =
1
2x×Bẑ so that Az = 0. This simplifies the eigenvalue equation to

Hψα(x
′) =

[
p2z
2m

+
Π2

y

2m
+

Π2
x

2m

]
ψα(x

′)

The first of these three expression pz has known eigenvalue ℏk given in the problem. The second two
terms can be evaluated using the One dimensional simple harmonic oscillator. Since the comutator
[Πx,Πy] = iℏ e

cB we can scale Πy by c
eB to make

[
Πx,

c
eBΠy

]
= iℏ. Let Y = c

eBΠy Using this the
expression becomes

Hψα(x
′) =

[
p2z
2m

+
Π2

x

2m
+

1

2
m
e2B2

m2c2
Y 2

]
ψα(x

′)

We can again try the raising a operator and lowering operators a† out of the last two expression.

a =

√
eB

2ℏc

(
Y +

ic

eB
Πx

)
a† =

√
eB

2ℏc

(
Y − ic

eB
Πx

)
And since a†a = mc

ℏeBH + i
2ℏ [Y,Πx] =

Hmc
ℏeB − 1

2 . In complete analogy to SHO we find a†a works
as simultaneous operator with Hamiltonian H, i.e. a†a commutes with H, and so acts on energy
eigenstates to give integer n as its eigenvalue. So the eigenvalue become

Hψα(x
′) =

[
p2z
2m

ψα(x
′)

]
+

[
Π2

x

2m
+

1

2
m
e2B2

m2c2
Y 2

]
ψα(x

′)

Hψα(x
′) =

ℏ2k2

2m
ψα(x

′) +

[(
n+

1

2

)
ℏ
|eB|
mc

]
ψα(x

′)

So the eigenvalue of the operator H which are the energy values are

En =
ℏ2k2

2m
+

(
n+

1

2

)
ℏ
|eB|
mc

This gives the allowed energy of the charged particle. □
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