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1 Introduction
When looking for a solution to a given physical problem, the local view gen-
erally prevails. An integral or sum is performed over a set length scale in the
system, and the result is used to describe the system’s behavior. For statistical
and quantum mechanical problems, such a view is generally quite successful:
the system is described locally, and longer range interactions are unimportant.
However, near phase transitions, all length scales become important to the be-
havior of the system, and the strict local view breaks down. The goal of the
renormalization group is to connect these small and large scale fluctuations.

2 The renormalization group
The first description of the “renormalization group” was given in 1953 by Stueck-
elberg and Petermann [2], with elaboration in 1954 by Gell-Mann and Low
[3]. This methodology was used to make otherwise divergent calculations in
QED converge. Wilson followed the lead of Kadanoff in developing a nearest-
neighbor description which used the power of the renormalization group to
solve the Ising problem [5]. It was for this work that Wilson received the Nobel
Prize in 1983. A more detailed description of the development of the theory
can be found in his Nobel paper [6].

The renormalization group itself allows one to solve systems where fluctu-
ations on a wide range of length scales are important, as is the case in critical
phenomena. It is a method for accurately connecting the small scale varia-
tions with larger and larger scales. The name follows from the renormalization
procedure for Feynman diagrams. However, the group representation of the
transformation is unused in most applications of the theory. “The fact that the
transformation can be described as a group (by adding inverses and an identity
element) plays no role.” [7]
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2.1 Definition
Let H = H{σl}({Kα}) be the Hamiltonian for a system with parameters {Kα}
(most of which are 0), spins {σl} , lattice spacing l > 1 and dimension d. The
set of parameters {Kα} form a vector K in some vector space V . Consider a
transformation Rl which reduces the number of degrees of freedom from N to
N ′ and the correlation length from ξ to ξ′ as follows:

N ′ = l−dN, ξ′ = l−1ξ. (2.1)

This transformation takes {Kα} → {K ′
α} ∈ V . The new parameter set{K ′

α}will
have more non-zero elements than the initial set (this will be shown in detail
later). Thus,

K
′ = Rl(K). (2.2)

By repeatedly applying Rl to an element of V we create a sequence of n + 1
vectors

K
(n) = Rl(K

(n−1)) = · · · = Rl(K
(0) = K),

where K
(n) has a new correlation length after repeated application of 2.1,

ξ(n) = l−nξ. (2.3)

The transformation 2.2, is called the renormalization group operator. Its ex-
act form depends on the system under consideration. The power of the renor-
malization group comes in its creation of fixed points, where

K
∗ = Rl(K

∗). (2.4)

At such a fixed point, ξ(K∗) = l−1ξ(K∗), either l = 0, ξ = 0, or ξ = ∞. Since
l > 0 as defined above, and the case ξ = 0 is uninteresting, we are left with
one possibility: ξ must be infinite. An infinite correlation length is known to
signify a critical point, or phase transition, as discussed in the introduction.

By use of this transformation, we can determine the value of such a fixed
point by iterating through a series of such transformations and looking for
fixed points in the resulting sum. For example, in a spin lattice, with free-
energy

e−βA =
∑

{σi}

e−βHσi
(K) α = 1, 2, . . . ,

we can apply the transformation Rl to get a new state, as above. Writing the
new state in a similar form to the old state,

e−βA = eN ′K′
0

∑

{σ′
j
}

e
−βH{σ′

j
}(K′)

,

where the elements of K
′ come from 2.2, and the new spin state of the system

is represented by {σ′
j}. This new configuration will have a free-energy per spin

of

f(K) = l−d(−K ′
0 + f(K′)),
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so we have introduced a new parameter K ′
0 and transformed to a new vector

K
′. As an example of this transformation, we will consider the solution to the

2-dimensional Ising model.

3 The Ising model
Consider a system of spins, all aligned in the z-direction. Each element of this
system has spin σi= +1 for “up” spin or -1 for “down” spin and all neighboring
elements have an interaction energy J. The internal energy of this system, is
thus

E = const. − J
∑

i,j

σiσj , (3.1)

where the sum is over all nearest neighbors i and j. This is the Ising Model,
a simplification of the general case where the sum is over vector spins si · sj .
This model is used, first because it is solvable, and second because it has many
analogs in other systems involving phase transitions.

In the 1-dimensional Ising model, the spin system is a loop, where we con-
sider the interactions between neighbors as one moves around the loop. The
neighbors of the Nth element are the N-1 and 1st elements. The loop eliminates
the end effects which would otherwise mar the calculation, but it does not af-
fect the properties of an infinite length chain of elements. There are several
methods for solving this system which are explored in chapter 12 of [1], and
they will not be described here. However, the 2 dimensional lattice version of
this problem is much more difficult, for which we shall need the power of the
renormalization group.

3.1 Solving the 2D Ising model
Consider the extension of the previous model to a two dimensional lattice of
size N ×N . We again only consider the interaction between nearest neighbors,
which produces a partition function as one would expect,

QN (T ) =
∑

{σn}

exp(
∑

n

∑

i

Kσnσn+i) (K = βJ), (3.2)

where the sum in the exponent is over all nearest neighbors, as in 3.1. n is a
vector with integral components that represents a site in the lattice, and i is
a unit vector in the direction (̂i = 1 or 2). Note that this ignores the diago-
nal interactions. These interactions will be accounted for during in successive
applications of the renormalization group.

The usual method for solving such a system is to determine the value of
the exponent numerically and add up all such configurations. However, near
the critical temperature, the correlation length becomes of similar scale to the
size of the whole system. Thus, in order to achieve the correct result, we must
let N be of similar scale to the size of the entire system. This is not a feasible
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Figure 1: An example 2d Ising spin lattice. The boxed points are summed over
and the set has only the unboxed points remaining, creating a new lattice. The
initial lattice is labeled by σn while the new lattice is labeled by τm.

calculation, since the number of operations in the sum is O(2N2

). Thus, we will
leverage the power of the renormalization group to reduce the calculation to
a series of workable steps at each length scale, and combine the results from
each step to get the final answer.

To express the new state of of the system, H1(τ), with the renormalized spin
lattice τ , we write the Kadanoff transformation

eH1(τ) =
∑

{σn}

(
∏

m

δτmσn(m))e
H0(σ). (3.3)

The notation, taken from [4] is somewhat confusing, so a short explanation is in
order. The delta-function δτmσn(m) ensures that half the elements remain fixed:
n(m) gives the index of σn in the new lattice (σn → τm). H0(σ) is the element in
the exponent of the partition function 3.2, and H1(τ) is the equivalent element
for the new lattice.

This transformation naturally provides a recursion formula from step i − 1
to step i,

eHi(τ) =
∑

{σn}

(
∏

m

δτmσn(m))e
Hi−1(σ). (3.4)

The spins σn in the (i − 1)st step, become the spins τm in the ith step. At
each step in this process, we reduce the number of lattice points by N 2/2. If N
is finite, we will have summed over all the points after only O(log2 N) steps,
a dramatic improvement from the standard calculation. If N is infinite, we
need only iterate until we reach the desired precision for the calculation. The
N → ∞ case will not be considered in this discussion.
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Let us look at one element of the lattice, σ22, as shown in (fig: 1). This
element will be coupled with σ12, σ21, σ23 and σ32. Note that these coupled
elements will be fixed in the next step, and so we can take this element of the
sum, 3.3, independently of all other elements.

S =
∑

σ22=±1

eKσ12σ22eKσ21σ22eKσ23σ22eKσ32σ22 (3.5)

=
∑

σ22=±1

eKσ22(σ12+σ21+σ23+σ32)

= 2 coshK(σ12 + σ21 + σ23 + σ32).

The 2 comes from the two possible spin states of σ22. All other points give a
similar result, so the result of 3.3 will be a product of cosh functions, one for
each summed-over lattice point.

What we want is a function with a similar form to the original H0(σ) with
a perturbation. Thus, we will attempt to write 3.5 as a polynomial in σm. First,
we write the sum as an exponential with three terms, each dependent on K:

S = 2 coshK(σ12 + σ21 + σ23 + σ32)

= exp(A + B(σ12(σ21 + σ23 + σ32) + σ21(σ23 + σ32) + σ23σ32)

+C(σ12σ21σ23σ32)). (3.6)

The non-constant terms involve the nearest-neighbor and quadrupole amongst
the fixed lattice points.

To show the validity of this new form, note that the sum is symmetric under
permutations of σn and sign changes (σn → −σn for all n). This leaves three
cases,

1. all σn = +1

2. one σn = −1, the remaining three +1

3. two σn = −1 and two +1

which when substituted into 3.6, produces three relations,

2 cosh(4K) = eA+6B+C ,

2 cosh(2K) = eA−C,

2 cosh(0K) = eA−2B+C .

Solving these simultaneous equations gives us A, B and C as a function of K,

A(K) = ln 2 +
1

8
(ln cosh 4K + 4 ln cosh 2K),

B(K) =
1

8
ln cosh 4K,

C(K) =
1

8
(ln cosh 4K − 4 ln cosh 2K,
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as desired.
We now have a value for each term in 3.6. Substituting this into the Kadanoff

transformation 3.3, and transforming σn → τm, we find

H1(τ) =
N2

2
A(K) + (

∑

m

∑

i

2τmτm+i +
∑

m

∑

±

τmτ
m+1̂±2̂

)B(K) (3.7)

+
∑

m

C(K)τmτ
m+1̂

τ
m+2̂

τ
m+1̂+2̂

.

The terms bear a bit of explanation. The constant term is proportional to the
area of the new lattice. The first term two-element term involves the new-
lattice nearest-neighbor interactions while the second two-element term in-
volves the diagonal nearest-neighbors. The 2 in the first two-element term
must be included, because each nearest-neighbor term appears in two original-
lattice sums (σ22 and σ33, for example). The four-element term is the quadrupole
coupling in the new lattice.

We now have an exact formula for the interaction energy of the new lat-
tice. A(K), B(K), and C(K) can be computed, given the particular interaction
energy J , and temperature, T , of the system. We can now use the recursion
relation 3.4 to find the successive terms of the renormalization group transfor-
mation. Unfortunately, the next terms will be more complicated, due to their
dependence on more than just the nearest-neighbor couplings. However, the
diagonal and four-spin couplings, which arise from 3.7, are generally much
smaller than the nearest-neighbor interactions, so a perturbation expansion
will suffice for those terms.

So long as the nearest-neighbor interactions are the most important terms
in Hi−1, we can carry out the transformation and compute the interaction en-
ergy at the Hith step without worry. There are alternate methods which allow
strong higher-order interactions, such as one developed by Niemeyer and Van
Leeuwen, in 1973. For a sample calculation on a 15-spin lattice, see [4], section
VI. His calculation, which was feasible on a computer of the time) produced
critical exponents 2.4, to within 0.2% of the measured value.
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