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1 Introduction

The Hamiltonian of system of harmonic oscillators,

H = Zhwm(ajnam—l—%), (1)

when applied to the modes of the EM field results in an infinite zero-point energy (zero-point is
when a],a,, = 0). This effect was first explored by Casimir in 1948 [1], but its strange implications
have directly measurable effects.

Unfortunately for astronomers, it does not help with the dark energy problem. The observed
acceleration of the expansion of the universe can be accounted for by a vacuum energy density of

pe=9x10"%2 J/m? (2)

There was once some hope that the zero-point energy could provide this “cosmological constant”.
As we will show, however, the zero-point energy is much to large to account for the cosmological
vacuum energy.

2 Vacuum energy density

Maxwell’s equations in free space are as follows
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Following (Ballentine 19.1) we find normal modes of the E field from the wave equation
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(an identical analysis can be performed for the B field). The solutions to this equation can be
represented as a sum of mode functions
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E(xt) = Y fun(t)tm (). 3)
These mode functions u,,(x) satisfy
Vi (x) = —khun(x), (4)
N X um(x) = 0 on aconducting surface,



where 10 is the unit normal to the conducting surface.
The solution to (eq: 4) in 3-space has vector components

uy = Ajcos(kix)sin(key) sin(ksz),
uy = Agsin(kix)cos(kqy)sin(ksz),
u, = Agsin(kiz)sin(kay) cos(ksz).

The wave vector k has three components, k; = %™ with frequency wy, = cy/k? + k3 + k3. The
divergence condition (eq: 5) implies A -k = 0. Thus A and k are not linearly 1ndependent which
means that there are two independent modes A; for each wave vector k when all n; # 0.

The number of modes in the cavity volume = L1 LoL3 is 2Q/73. Since k is strictly positive,
we only are looking at one octant of phase space. For large k, the zero-point energy density, (where
al am = 0in (eq: 1)) can thus be approximated by an integral as follows

>
QZ =53 /0 §hck47rk2dk. (6)

The integral (eq: 6) is obviously divergent if we let k& — oo, which necessitates introducing a
maximum frequency k. = 27/A.. Thus, the integral, evaluated for all k£ < k. is

hek? /872 (7
The cutoff wavelength ). is fairly arbitrary, but to demonstrate how quickly (eq: 7) increases,
we show a few examples:
2.7 x 1078 J/m?,
6.24 x 10713 J/m?,
77.1.J/m3,
6.24 x 107 J/m3,
9.5 x 10M4 J/m?3.

(for comparison) 100 W lightbulb at 1 m
Ae = Imm

Ae = 300nm (near UV)

Ae = 10nm (19 €V)

Ae = 1.6 x 10™**m (the Planck length)
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At long wavelengths, this energy is fairly negligible, but once the visible region has been included,
it rapidly blows up. However, since this is the minimum energy of the field, we cannot extract any
useful work from it so it does not necessarily create a paradox. The dark energy referred to in (eq:
2) is also much smaller than any of the above energy densities. However, the zero-point energy can
produce a noticeable effect between two close conductors.

3 Casimir force

Consider a box of dimensions L x L x L. A conducting plate is inserted at a distance R from one of
the faces (R < L). This alters the boundary conditions causing a frequency shift of the zero-point
energy in the box. The change in the zero-point energy is

AW:WR—I—WLfR—WL, (8)

where Wk, is the energy on the left side of the plate (from 0 to R), W _g is the energy on the right
side of the plate (from R to L) and W7, is the energy of the box before the plate was inserted.
To find the energy of each region, we multiply the integral (eq: 6) by the volume of the region.

Let k = |/k2Z + k2 + kZ so the integrals are

3
WL = 2L /// =hck dk,dk,dk.,
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Wr-r = R) /// —hck dk,dk,dk.,
Wr = i@ —//Oolhckdk dk
" n=0 "W2 0 2 e



1 for n=0

=1 9 for n>0 ° 0, accounts for the two polarization states

For Wg we take k, = nm/R and 0,

when n>0.

3.1 A short riff on the cutoff function.
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Figure 1: An example cutoff function.

We need to restrict the values of k in the above integrals, since they are, again, divergent. The
high frequency modes are not noticed by the conducting plate. Thus, we can effectively ignore the
high k modes. To do this, we introduce a cutoff function,

f(k/ke) — 1for k < ke,
f(k/ke) — 0Ofor k> k..

An example cutoff function is plotted in (fig. 1).

3.2 Evaluating the energy shift
Applying the cutoff function to (eq: 8), we find

L2 & nw, R [
AW = e (S b = [ athk) ©
where -
g(kz)://o k f(k/k.)dk,dk, (10)

and k and k,are as defined above. Through a set of substitutions (Ballentine p.537), we arrive at
a simplified expression for (eq: 9) involving w = n? + n3 + n3,

AW = 7(ZGnF(n)—/OOOF(n)dn) (11)

where

If we evaluate the difference between the sum and the integral by means of the Euler-Maclaurin
formula [2], we find an energy shift of
72 L2



This energy difference will produce a force

o 3AW7 2 L2
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Alternately, one can look at this as a pressure on the plate (of area A = L?) of

F w2
P=" = he—'—.
A~ " 240R

4 Experimental verification
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Figure 2: The measured average Casimir force is shown as square dots. The solid line is the
theoretical Casimir force including all corrections. (from [3], fig 4)

Experiments have been carried out to look for the existence of this force. The first by Sparnaay
in 1958 is cited in the textbook. More recently, Mohideen and Roy [3] and Lamoreaux [4], among
others, have measured this effect to sub-micron scales, with an accuracy of a few percent (see fig:
2). The experiments they performed involve measuring the force on an uncharged, conducting
sphere or plate when it is brought close to another uncharged, conducting plate. For a long list of
examples, see [5] and a summary of recent (pre-2004) results [6].
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