Gas and Molecular Dynamics in Galaxies

John Parejko

Gas and Molecular Dynamics in Galaxies - p. 1

A brief message from our sponsor

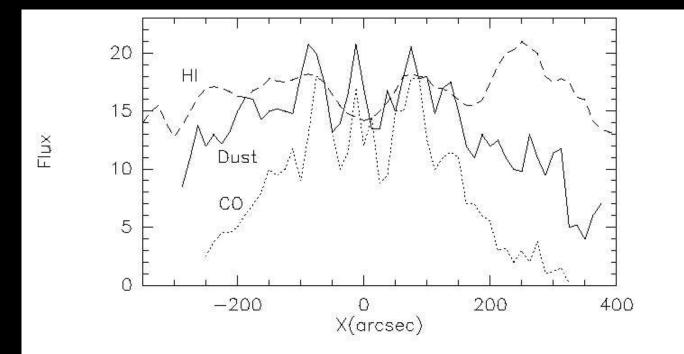
Authors: Proofread! Editors: Edit!

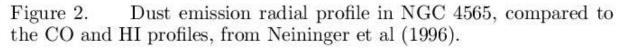
Introduction

- 1. What's the point?
- 2. Correlation between CO and H_2
- 3. It's dusty in here
- 4. Molecular content vs. galaxy type
- 5. Effect on galaxy structure

What is the point?

- Most abundant element: H₂
- H₂ content determines star formation rate
- How do we determine gas content of galaxies?
 - \bowtie H₂ is hard to see
 - ► CO traces H₂
- Spirals vs Ellipticals


CO and H_2 lines


Carbon Monoxide
Molecular rotation: ~1.3mm
Hydrogen
21cm spin flip transition

CO, dust and H_2

- Emperical fit
- CO and H₂ column densities similar
 - CO transition "strength"
 - ► H₂ density
- Dust lanes and CO arms
 - star forming shells and chaotic motion

Dust and CO

NGC891: dust and CO emmission

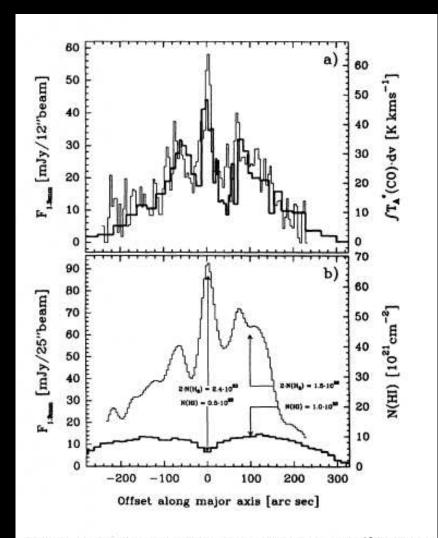
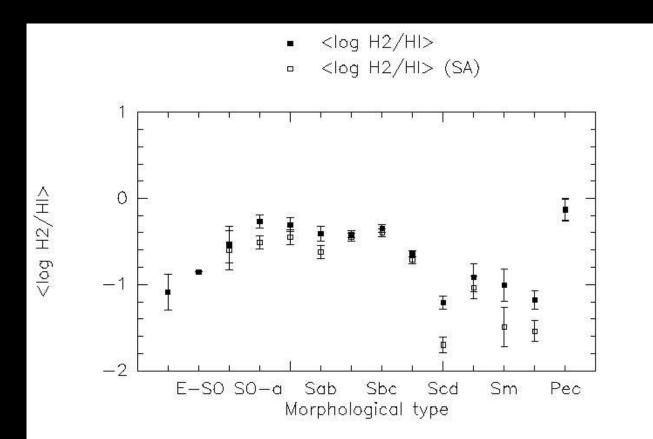
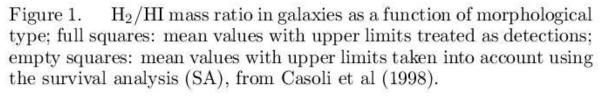




Fig. 2. a) The $\lambda 1.3$ mm continuum emission and the ¹²CO (2-1) integrated line intensity along the major axis, observed with a 12" angular resolution. Abscissa, the apparent distance from the center

Gas and Molecular Dynamics in Galaxies – p. 8

Galaxy type

Combes 1999

Importance of bar

- Drives of gas and dust
 - molecular gas and dust to center
 - Feeder of AGN and/or starburst
- Linblad resonance
 - Nuclear, Inner, Outer
 - Pattern speed
 - Orbital frequency
 - Oscillation frequency of the potential

Linblad resonance

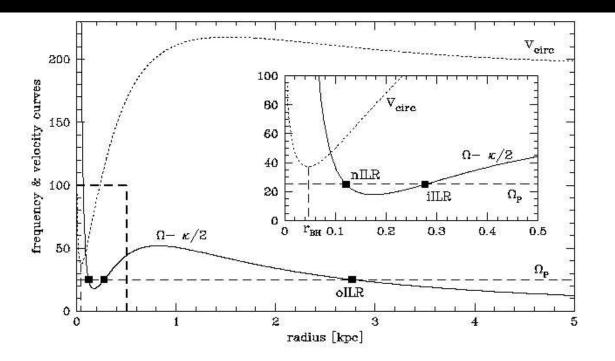


Fig. 2. Velocity and frequency curves for a potential with 3 ILRs. The circular velocity (v_{circ}) is drawn with dotted line, the frequency curve is solid. The constant pattern speed Ω_P is marked with the horizontal dashed line. Positions of the three ILRs: nuclear (nILR), inner (iILR), and outer (oILR) are marked with squares. A close-up of the inner region is shown in the insert, where the sphere of influence of the $10^7 M_{\odot}$ MBH has roughly the radius r_{BH} .

Spirals

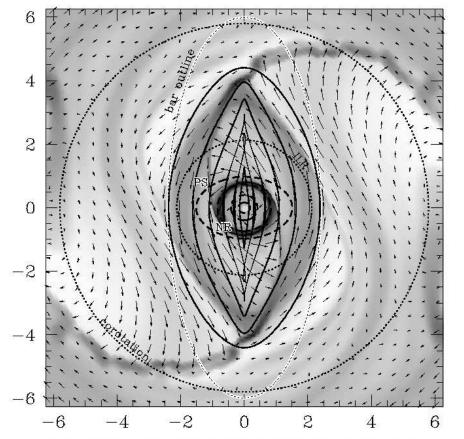


Fig. 1. A representative snapshot of the gas density and velocity field in a barred galaxy, taken after 6 rotation periods of the bar, once the main flow patterns have been established. The gas, treated as a non-selfgravitating, isothermal fluid with a sound speed of 5 km/s, responds to a fixed gravitational potential of a bar, disc and spheroid, and is modeled with an Eulerian code on a fixed grid. The density is shown in grayscale, and arrows mark gas velocity in the reference frame rotating with the bar. Dotted circles mark corotation and the ILR. Examples of x_1 and x_2 orbits are drawn with solid and dashed lines, respectively. **PS** marks the principal shock in the bar, **NR** is the nuclear the principal shock in the bar, **NR** is the nuclear the principal shock in the bar.

Clusters

- Cluster spirals
 - deficient in HI
 - Still contain CO H_2 ?
- Starburst outside of galaxies?
 - Xu & Tuffs (1998)
 - 25kpc from neighbouring galaxies
 - Young stars ~.7M_o/year

Redshift dependence

- High z observations
 - \ge > 10 objects with z > 2.2
- Gravitational amplification
- Gas excitation uncertainty
- Infrared background
- Early starbursts?