Name:	Sec./Group	Date:
-------	------------	--------------

Color	Filter/Light Used	Wavelength,	c/(\(\lambda \psi e)\)	V1	V2	V3	Vavg.
		nm					
UV	None / Hg Arc	365					
Blue	Blue / Hg Arc	405					
Green	Green / Hg Arc	546					
Red	None / Diode Laser	650					

Revised Procedures for Experiment:

- 1. Place mercury arc lamp as close as possible to the detector's aperture. This will max out the meter (indicator for nanoamperes will move far to the right).
- 2. Turn the voltage-adjust knob fully clockwise.
- 3. Turn zero-adjust knob so that the indicator is slightly to the left of the zero on the nanoamperes scale.
- 4. Turn the voltage-adjust knob CCW so that the indicator just reaches zero on the scale.
- 5. Read stopping voltage on voltmeter and record in table.
- 6. Block the light reaching the detector between each reading to prevent drift.
- 7. Take three stopping voltage readings for each wavelength and obtain Vaverage.
- 8. Use filters for 405 nm and 546 nm wavelengths.
- 9. Replace the mercury arc lamp with the red diode laser for the 650 nm wavelength. Position the laser about a meter from the detector's aperture and adjust distance as needed.
- 10. Plot Vavg (Stopping Voltage in volts) vs. $c/(\lambda^*e) \times 10^{33}$.
- 11. Record best linear fit for Planck's constant (slope) and work function (y-intercept) from chart.

h =	Error =	· · · · · · · · · · · · · · · · · · ·
$\phi =$		