Constants

$\sigma=5.6703 \times 10^{-8} \frac{W}{m^{2} K^{4}}, \quad h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}=4.136 \times 10^{-15} \mathrm{eV} . \mathrm{s}$, $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}, \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \quad \mathrm{hc}=1240 \mathrm{eV} . \mathrm{nm}$, $\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$ $\mathrm{e}=-1.602 \times 10^{-19} \mathrm{C}$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} /$ A.m, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Simple Harmonic Motion

$\begin{array}{lll}F=-k x, & x(t)=A \cos (\omega t+\phi), & \omega=\sqrt{\frac{k}{m}} \\ f=\frac{1}{T}=\frac{\omega}{2 \pi} & v(t)=-\omega A \sin (\omega t+\phi) & a(t)=-\omega^{2} A \cos (\omega t+\phi)\end{array}$
$k=\frac{m g}{\Delta l}, \quad$ for a hanging spring
$A=\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}, \quad \phi=\cos ^{-1}\left(\frac{x_{0}}{A}\right) \quad$ and $\sin ^{-1}\left(-\frac{v_{0}}{\omega A}\right)$
$E=K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}$
$\omega=\sqrt{\frac{g}{l}} \quad \omega=\sqrt{\frac{m g d}{I}}$
$x(t)=\left[A e^{-\frac{b}{2 m} t}\right] \cos \left(\omega^{\prime} t+\phi\right)$ where $\omega^{\prime}={\sqrt{\omega^{2}-\left(\frac{b}{2 m}\right)^{2}}}^{2}$

Mechanical Waves

$y(x, t)=A \cos (k x-\omega t), \quad k=\frac{2 \pi}{\lambda}, \quad \omega=\frac{2 \pi}{T}=2 \pi f$
$v=\frac{\lambda}{T}=\lambda f=\frac{\omega}{k}, \quad v=\sqrt{\frac{F}{\mu}}$, where $\quad \mu=\frac{m}{l}$
$v_{y}=\frac{\partial y}{\partial t}=\omega A \sin (k x-\omega t), \quad \quad a_{y}=\frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2} A \cos (k x-\omega t)$
$P_{a v}=\frac{1}{2} \sqrt{\mu F} \omega^{2} A^{2}=\frac{1}{2} \mu \omega^{2} A^{2} v$
$I=\frac{P}{4 \pi r^{2}}$
Superposition Principle
$y(x, t)=y_{1}+y_{2}=A \cos (k x-\omega t)+A \cos (k x-\omega t+\phi)=\left[2 A \cos \frac{\phi}{2}\right] \sin \left(k x-\omega t+\frac{\phi}{2}\right)$

Normal modes:
$y(x, t)=y_{1}+y_{2}=A \cos (k x-\omega t)+A \cos (k x+\omega t)=[2 A \sin k x] \sin \omega t$

Amplitude maximum or antinode when
$\sin k x= \pm 1, \Rightarrow k x=\frac{2 n+1}{2} \pi, \quad x=\frac{2 n+1}{4} \lambda, \quad \mathrm{n}=0,1,2,3 \ldots$

Amplitude $=0$ or node when
$\sin k x=0, \Rightarrow k x=n \pi, \quad x=\frac{n}{2} \lambda \quad \mathrm{n}=1,2,3 \ldots$
Separation between two successive nodes $=\lambda / 2$
Standing waves on a stretched string fixed at both ends
$y(0, t)=y(L, t)=0$
$\Rightarrow 2 A \sin k L=0$,
$\Rightarrow k L=n \pi$,
$\Rightarrow \lambda_{n}=\frac{2 L}{n}$
Allowed frequencies: $\quad f_{n}=\frac{v}{\lambda_{n}}=\frac{n}{2 L} \sqrt{\frac{T}{\mu}}=n f_{1}$

Electromagnetic waves

$\vec{E}=\vec{E}_{\max } \cos (k x-\omega t), \quad \vec{B}=\vec{B}_{\max } \cos (k x-\omega t), \quad E=c B, \quad c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$
$n=\frac{c}{v} \approx \sqrt{K}, \quad \lambda=\frac{\lambda_{0}}{n}$
$u=\varepsilon_{0} E^{2}$
Poynting vector $\vec{S}=\frac{\vec{E} x \vec{B}}{\mu_{0}}, \quad S_{a v}=I=\frac{E_{\max } B_{\max }}{2 \mu_{0}}=\frac{E_{\max }^{2}}{2 \mu_{0} c}=\frac{c B_{\max }^{2}}{2 \mu_{0}}$
$P=\frac{I}{c}$ (complete absorption), $P=\frac{2 I}{c}$ (total reflection)
Standing waves similar to standing waves on a stretched string.

Nature of Light:

Laws of reflection and refraction: $\theta_{r}=\theta_{a}, \quad n_{a} \sin \theta_{a}=n_{b} \sin \theta_{b}$ $\sin \theta_{\text {crit }}=\frac{n_{b}}{n_{a}}$
Polarization $I=\frac{1}{2} I_{0}$ for unpolarized wave passing through one polarizing sheet. $I=I_{\max } \cos ^{2} \phi$ for plane polarized wave passing though one polarizing sheet.

Brewster's angle: $\tan \theta_{p}=\frac{n_{b}}{n_{a}}$

Interference and Diffraction

Young's double slit experiment

$E_{\text {tot }}=\left(2 A \cos \frac{\phi}{2}\right) \sin \left(k r_{1}-\omega t+\frac{\phi}{2}\right)$
$\phi=k \delta, \quad k=\frac{2 \pi}{\lambda} \quad \delta=d \sin \theta, \quad \sin \theta \approx \frac{y}{R}$
Constructive interference: $\cos \frac{\phi}{2}= \pm 1, \phi=2 m \pi, \delta=m \lambda ;$
Destructive interference: $\cos \frac{\phi}{2}=0, \quad \phi=(2 m+1) \pi, \quad \delta=\left(m+\frac{1}{2}\right) \lambda$
$I(\theta)=I_{0} \cos ^{2}\left(\frac{\phi}{2}\right)$

Thin film Interference

$\lambda=\frac{\lambda_{0}}{n}$, Path difference in a medium of refractive index $\mathrm{n}: \delta=2 t$
Additional phase difference of π by reflection from denser medium
Total phase difference $\phi=\frac{2 \pi}{\lambda} \delta-\pi$
Constructive Interference: $\phi=2 m \pi$, Destructive Interference: $\phi=(2 m+1) \pi$

Diffraction

$a \sin \theta=m \lambda, \quad I(\theta)=I_{0}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\left(\frac{\pi a}{\lambda} \sin \theta\right)}\right]^{2}$
$I(\theta)=I_{0} \cos ^{2} \frac{\varphi}{2}\left[\frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\left(\frac{\pi a}{\lambda} \sin \theta\right)}\right]^{2}$ where $\phi=\frac{2 \pi d}{\lambda} \sin \theta$
$d \sin \theta=m \lambda, \quad R=\frac{\lambda_{\text {avg }}}{\Delta \lambda}=m N$
$\sin \theta_{1}=1.22 \frac{\lambda}{d}$

Relativity

$$
\begin{aligned}
& \Delta t=\gamma \Delta t_{0}, \quad L=\frac{L_{0}}{\gamma}, \quad \gamma=\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}} \\
& x^{\prime}=\gamma(x-u t), \quad t^{\prime}=\gamma\left(t-\frac{u x}{c^{2}}\right) \\
& v_{x}^{\prime}=\frac{v_{x}-u}{1-\frac{u v_{x}}{c^{2}}}, \quad v_{y}^{\prime}=\frac{v_{y}}{\gamma\left(1-\frac{u v_{x}}{c^{2}}\right)}, \quad v_{z}^{\prime}=\frac{v_{z}}{\gamma\left(1-\frac{u v_{x}}{c^{2}}\right)} \\
& \vec{p}=\frac{m \vec{v}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\gamma m \vec{v}, \quad \vec{F}=\frac{d \vec{p}}{d t} \\
& K=m c^{2}(\gamma-1), \quad E_{R}=m c^{2}, \quad E=\gamma m c^{2}=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}} \\
& m=0 \Rightarrow E=p c \Rightarrow p=\frac{E}{c}
\end{aligned}
$$

Photons, Electrons and Atoms

$I=\sigma T^{4}, \quad I=\frac{P}{\text { area }}$
$\lambda_{m} T=2.898 \times 10^{-3} \mathrm{~m} . \mathrm{K}$
$I(\lambda)=\frac{2 \pi h c^{2} / \lambda^{5}}{e^{h_{c} / \lambda t}-1}$,
$E=h f=\frac{h c}{\lambda}, \quad p=\frac{E}{c}=\frac{h}{\lambda}$,
$K_{\text {max }}=e V_{0}=h f-\phi=\frac{h c}{\lambda}-\phi, \quad h f_{c}=\frac{h c}{\lambda_{c}}=\phi$
$\lambda^{\prime}-\lambda_{0}=\lambda_{c}(1-\cos \phi), \quad \lambda_{c}=\frac{h}{m c}=0.00243 \mathrm{~nm}$
$L=m v r=n \hbar$
$r_{n}=\varepsilon_{0} \frac{h^{2} n^{2}}{\pi m e^{2}}=n^{2} a_{0}, \quad E_{n}=-\frac{1}{\varepsilon_{0}^{2}} \frac{m e^{4}}{8 h^{2} n^{2}}=-\frac{E_{0}}{n^{2}}, \quad E_{0}=13.6 \mathrm{eV}$
$E_{\text {ion }}=E_{\infty}-E_{1}=13.6 \mathrm{eV}$
$f=\frac{E_{i}-E_{f}}{h}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right), \quad n_{i}>n_{f}$
$R_{H}=\frac{m k_{e}^{2} e^{4}}{4 \pi c \hbar^{3}} \quad=1.097 \times 10^{7} \mathrm{~m}^{-1}$

The Wave Properties of Particles

$\lambda=\frac{h}{p}=\frac{h}{m v}, \quad f=\frac{E}{h}, \quad \frac{1}{2} m v^{2}=|e| \Delta V$
The Quantum Particle $\quad v_{\text {phase }}=\frac{\omega}{k}, \quad v_{g}=\frac{d \omega}{d k}$
The Uncertainty Principle $\quad \Delta x \Delta p_{x} \geq \hbar, \quad \Delta E \Delta t \geq \hbar$
Matter Wave: $\quad P(x) d x=|\psi(x)|^{2} d x$

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \varphi(x)}{d x^{2}}+U(x) \varphi(x)=E \varphi(x)
$$

Particle in an infinite potential well

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}, \quad E_{n}=\frac{h^{2}}{8 m L^{2}} n^{2},
$$

Tunneling: $T \cong e^{-2 \kappa L}$ where $\kappa=\frac{\sqrt{2 m(U-E)}}{\hbar}$
Harmonic oscillator: $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$

