Python Tutorial

Release 2.5

Guido van Rossum
Fred L. Drake, Jr., editor

19th September, 2006

Python Software Foundation
Email: docs@python.org

Copyright © 2001-2006 Python Software Foundation. All tigreserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Researdtidtives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum.rights reserved.

See the end of this document for complete license and peansmformation.

Abstract

Python is an easy to learn, powerful programming languagkad efficient high-level data structures and a simple

but effective approach to object-oriented programmingh®y’s elegant syntax and dynamic typing, together with its

interpreted nature, make it an ideal language for scripgimgj rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard libregyfraeely available in source or binary form for all ma-
jor platforms from the Python Web sitéttp://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free thirdyp®ython modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new funatiand data types implemented in C ot+C(or other
languages callable from C). Python is also suitable as anseixin language for customizable applications.

This tutorial introduces the reader informally to the basiocepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on expegi but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, seBytion Library Referencdocument. Thdython Refer-
ence Manuabives a more formal definition of the language. To write egtens in C or G+, readExtending and
Embedding the Python Interpretand Python/C API ReferenceThere are also several books covering Python in
depth.

This tutorial does not attempt to be comprehensive and ceweny single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most notéw features, and will give you a good idea of the
language’s flavor and style. After reading it, you will beatu read and write Python modules and programs, and you
will be ready to learn more about the various Python librandules described in theython Library Reference

CONTENTS

Whetting Your Appetite 1
Using the Python Interpreter 3
2.1 InvokingthelInterpreter e 3
2.2 Thelnterpreterand Its Environment L L 4
An Informal Introduction to Python 7
3.1 Using PythonasaCalculator e 7
3.2 First Steps Towards Programming i e e e 17
More Control Flow Tools 19
4.1 if Statements L e 19
4.2 for Statements e 19
4.3 Therange() Function e 20
4.4 break andcontinue Statements, anelse Clausesonloops 21
45 pass Statements e 21
4.6 Defining Functions L 22
4.7 MoreonDefining Functions L e e e 23
Data Structures 29
5.1 MoreonLists e e e 29
5.2 Thedel statement e 33
5.3 Tuplesand SEqUENCES e e e e e e 34
5.4 SetS .. e e 35
5.5 Dictionaries e e 35
5.6 LoopingTechniques e 36
5.7 Moreon Conditions e e e 38
5.8 Comparing Sequences and Other Types mu i i it 38
Modules 41
6.1 MoreonModules e e 42
6.2 Standard Modules L e 43
6.3 Thedir() Function e 44
6.4 Packages e e 45
Input and Output 49
7.1 FancierOutput Formatting e e e e 49
7.2 ReadingandWriting Files e e e 52
Errors and Exceptions 55

10

11

12

8.1 Syntax Errors e e e e e
8.2 EXCEPLONS o e e e e e e
8.3 Handling Exceptions e e
8.4 Raising EXCeptions e e
8.5 User-defined EXCeptions L e e
8.6 Defining Clean-up ACtIONS e e e
8.7 Predefined Clean-up ACtions e e e

Classes

9.1 AWord About Terminology e e
9.2 PythonScopesand Name Spaces i i i i it i e e
9.3 AFirstLookatClasses e e e
9.4 RandomRemarks e e e e e
9.5 Inheritance e e e e e
9.6 Private Variables e e e
9.7 OddsandENnds e e e
9.8 Exceptions Are Classes TOO o i e e
0.9 Hterators e e e
9.10 Generators e e e e e
9.11 Generator EXpressions e e e e e e e

Brief Tour of the Standard Library

10.1 Operating System Interface L L e
10.2 FileWildcards e e e
10.3 CommandLine Arguments e e e e e e
10.4 Error Output Redirection and Program Termination
10.5 String Pattern Matching L e e e e
10.6 Mathematics o e e
10.7 INterNEtACCESS e e
10.8 Datesand TIMES e e
10.9 Data CoOmMPresSiON v v v i e e e e e e e e e e e e e e e e
10.10 Performance Measurement e e e e e
10.11 Quality Control e e
10.12 Batteries Included L e e e

Brief Tour of the Standard Library — Part II

11.1 OutputFormatting e e e
11.2 Templating e e
11.3 Working with Binary Data Record Layouts o . i i v it i
11.4 Multi-threading e e e e
115 Logaing . - . . o o e e
11.6 Weak References e e
11.7 ToolsforWorkingwith Lists
11.8 Decimal Floating Point Arithmetic e

What Now?

Interactive Input Editing and History Substitution

Al LineEditing e e e e
A.2 History Substitution e e
A3 KeyBindings e e e
A4 CommMeENtary e e e e e e e e e

Floating Point Arithmetic: Issues and Limitations
B.1 Representation Error e

89

91
91
91
91
93

95

C History and License
C.1 Historyofthesoftware e
C.2 Terms and conditions for accessing or otherwise usitigddy
C.3 Licenses and Acknowledgements for Incorporated Soétwa.

D Glossary

Index

99
99
100
103

113

117

CHAPTER
ONE

Whetting Your Appetite

If you do much work on computers, eventually you find that é'eesome task you'd like to automate. For example,
you may wish to perform a search-and-replace over a largéonaunof text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you'd like to wrisereall custom database, or a specialized GUI application,
or a simple game.

If you're a professional software developer, you may hawedd with several C/@+/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhgps’re writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you've written grara that could use an extension language, and you
don’t want to design and implement a whole new language far gpplication.

Python is just the language for you.

You could write a Wix shell script or Windows batch files for some of these taskissheil scripts are best at moving
around files and changing text data, not well-suited for Gpfilizations or games. You could write a G/ Java
program, but it can take a lot of development time to get eviinstadraft program. Python is simpler to use, available
on Windows, MacOS X, and NiX operating systems, and will help you get the job done morekdjui

Python is simple to use, but it is a real programming languaffering much more structure and support for large pro-
grams than shell scripts or batch files can offer. On the dthed, Python also offers much more error checking than
C, and, being aery-high-level languagét has high-level data types built in, such as flexible asrayd dictionaries.
Because of its more general data types Python is applicalalertuch larger problem domain than Awk or even Perl,
yet many things are at least as easy in Python as in thosedgagu

Python allows you to split your program into modules that barreused in other Python programs. It comes with a
large collection of standard modules that you can use asasis bf your programs — or as examples to start learning
to program in Python. Some of these modules provide thikgdile I/O, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you oceradite time during program development because no
compilation and linking is necessary. The interpreter canged interactively, which makes it easy to experiment with
features of the language, to write throw-away programsp ¢edt functions during bottom-up program development.
Itis also a handy desk calculator.

Python enables programs to be written compactly and repd@tiigrams written in Python are typically much shorter
than equivalent C, €+, or Java programs, for several reasons:

« the high-level data types allow you to express complexaipans in a single statement;
« statement grouping is done by indentation instead of méginand ending brackets;

* no variable or argument declarations are necessatry.

Python isextensible if you know how to program in C it is easy to add a new built-imétion or module to the
interpreter, either to perform critical operations at nmaxin speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specifaphics library). Once you are really hooked, you can

link the Python interpreter into an application written ira@d use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Month &yt Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skitsdouientation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to ekaarit in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play wité Python interpreter as you read.

In the next chapter, the mechanics of using the interpreteegplained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of thgh@h language and system through examples, beginning
with simple expressions, statements and data types, thriwngtions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

2 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed asst/local/bin/python’ on those machines where it is available; putting
‘usr/local/bin’ in your UNIX shell’'s search path makes it possible to start it by typimgatmmand

python

to the shell. Since the choice of the directory where therjméder lives is an installation option, other places are
possible; check with your local Python guru or system adstiator. (E.g.,/usr/local/python’ is a popular alternative
location.)

On Windows machines, the Python installation is usuallggdbin ‘C:\Python24’, though you can change this when
you're running the installer. To add this directory to yoathp you can type the following command into the command
promptin a DOS box:

set path=%path%;C:\python24

Typing an end-of-file characte€pntrol-D on UNIX, Control-Z on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesndrky you can exit the interpreter by typing the following
commands:import sys; sys.exit() '

The interpreter’s line-editing features usually aren’tysophisticated. On Nix, whoever installed the interpreter
may have enabled support for the GNU readline library, wlidds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether comimaretliting is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have commanddidiging; see Appendix A for an introduction to the
keys. If nothing appears to happen, oftlif is echoed, command line editing isn’t available; you'llpbk able to use
backspace to remove characters from the current line.

The interpreter operates somewhat like theixXJshell: when called with standard input connected to a ttyagg\t
reads and executes commands interactively; when callddarfite name argument or with a file as standard input, it
reads and executessaript from that file.

A second way of starting the interpreter pg/thon -c commandJarg] ... ', which executes the statement(s) in
commanganalogous to the shells option. Since Python statements often contain spaces er ollaracters that are
special to the shell, it is best to quatemmandn its entirety with double quotes.

Some Python modules are also useful as scripts. These cawdded using python -m module [arg] ... !,
which executes the source file foroduleas if you had spelled out its full name on the command line.

Note that there is a difference betwegython file ' and ‘python <file . In the latter case, input requests

from the program, such as callsitqput() andraw_input() , are satisfied fronfile. Since this file has already
been read until the end by the parser before the prograns s&ecuting, the program will encounter end-of-file
immediately. In the former case (which is usually what yountyaéhey are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be ableimatine script and enter interactive mode afterwards.
This can be done by passingbefore the script. (This does not work if the script is reamrfrstandard input, for the
same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additiarguments thereafter are passed to the script in the
variablesys.argv , which is a list of strings. Its length is at least one; whersoopt and no arguments are given,
sys.argv[0] is an empty string. When the script name is givefy'as (meaning standard inpugys.argv[0]
issetto’-” . When-c commands usedsys.argv[0] is setto’-c’ . When-m moduleis usedsys.argv[0]

is set to the full name of the located module. Options fouterat commandr -m moduleare not consumed by the
Python interpreter’s option processing but lefsis.argv ~ for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is saié to interactive modeln this mode it prompts for the
next command with th@rimary prompt usually three greater-than signs¥* ’); for continuation lines it prompts
with the secondary promptby default three dots (. ’). The interpreter prints a welcome message stating its
version number and a copyright notice before printing thet firompt:

python

Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sun 0s5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amst erdam

>>>

Continuation lines are needed when entering a multi-limestoct. As an example, take a look at tifiis statement:

>>> the_world_is_flat = 1
>>> jf the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error mesaagd a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exitshwét nonzero exit status after printing the stack trace.
(Exceptions handled by axcept clause in @ry statement are not errors in this context.) Some errors arenin
ditionally fatal and cause an exit with a nonzero exit; thiplées to internal inconsistencies and some cases of rgnnin
out of memory. All error messages are written to the standenat stream; normal output from executed commands
is written to standard output.

4 Chapter 2. Using the Python Interpreter

Typing the interrupt character (usually Control-C or DEh)tlhe primary or secondary prompt cancels the input and
returns to the primary promptTyping an interrupt while a command is executing raiseigboardinterrupt
exception, which may be handled byrg statement.

2.2.2 Executable Python Scripts

On BSD'ish WINIx systems, Python scripts can be made directly executakdestiell scripts, by putting the line

#! Jusr/bin/env python

(assuming that the interpreter is on the user's PATH) at #ggriming of the script and giving the file an executable
mode. The#!’ must be the first two characters of the file. On some platforthis first line must end with a
UNix-style line ending (n ’), not a Mac OS ({r ") or Windows (\r\n ') line ending. Note that the hash, or pound,
character,#’, is used to start a comment in Python.

The script can be given an executable mode, or permissiorg tteechmod command:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different thesicil in Python source files. The best way to do it is to put one more
special comment line right after ti# line to define the source file encoding:

-*- coding: encoding- *-

With that declaration, all characters in the source file dltreated as having the encodemgroding and it will be
possible to directly write Unicode string literals in théesged encoding. The list of possible encodings can be found
in the Python Library Referencén the section orodecs .

For example, to write Unicode literals including the Eurarency symbol, the 1ISO-8859-15 encoding can be used,
with the Euro symbol having the ordinal value 164. This scwdl print the value 8364 (the Unicode codepoint
corresponding to the Euro symbol) and then exit:

- - coding: is0-8859-15 - * -

currency = u" £"
print ord(currency)

If your editor supports saving files d$TF-8 with a UTF-8 byte order mark(aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this cdipalii Options/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in oRighon releases (2.2 and earlier),
and also not understood by the operating system for scrggtfiith#! lines (only used on Wix systems).

By using UTF-8 (either through the signature or an encodegjatation), characters of most languages in the world
can be used simultaneously in string literals and commelrsisig nonAscil characters in identifiers is not supported.
To display all these characters properly, your editor mesbgnize that the file is UTF-8, and it must use a font that
supports all the characters in the file.

1A problem with the GNU Readline package may prevent this.

2.2. The Interpreter and Its Environment 5

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handh&we some standard commands executed every time the
interpreter is started. You can do this by setting an enwiramt variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar t® throfile’ feature of the Wix shells.

This file is only read in interactive sessions, not when Pytfeads commands from a script, and not whidavitty’
is given as the explicit source of commands (which othenbiggaves like an interactive session). It is executed in
the same namespace where interactive commands are exesmthdt objects that it defines or imports can be used
without qualification in the interactive session. You caspathange the prompsgs.psl andsys.ps2 in thisfile.

If you want to read an additional start-up file from the cutrdinectory, you can program this in the global start-
up file using code likeif os.path.isfile(’.pythonrc.py’): execfile(’.pythonr c.py) .If
you want to use the startup file in a script, you must do thidieitly in the script:

import os

filename = os.environ.get(PYTHONSTARTUP?)

if filename and os.path.isfile(filename):
execfile(filename)

6 Chapter 2. Using the Python Interpreter

CHAPTER
THREE

An Informal Introduction to Python

In the following examples, input and output are distingeistby the presence or absence of prompts (* and

‘... "): to repeat the example, you must type everything aftermptteenpt, when the prompt appears; lines that do
not begin with a prompt are output from the interpreter. Nb## a secondary prompt on a line by itself in an example
means you must type a blank line; this is used to end a mokidommand.

Many of the examples in this manual, even those entered atiractive prompt, include comments. Comments in
Python start with the hash charactéf, ‘and extend to the end of the physical line. A comment mayappt the start
of a line or following whitespace or code, but not within arggrliteral. A hash character within a string literal is just
a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpesid wait for the primary prompty»> . (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can typexpression at it and it will write the value. Expression
syntax is straightforward: the operaters- , * and/ work just like in most other languages (for example, Pascal o
C); parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

. 2+2

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5 *6)/4

5

>>> # Integer division returns the floor:
.. 713

2

>>> 7/-3

-3

The equal sign €') is used to assign a value to a variable. Afterwards, noltesdisplayed before the next interactive
prompt:

>>> width = 20
>>> height = 5 *9
>>> width * height
900

A value can be assigned to several variables simultaneously

>>>
>>>

XxX=y=2z=0 # Zero x, y and z
X

>>> y

>>> 7

There is full support for floating point; operators with mixg/pe operands convert the integer operand to floating
point:

>>> 3 x 375/ 15
7.5

>>> 7.0/ 2

35

Complex numbers are also supported; imaginary numbers @itewwith a suffix of j ’ or *J’. Complex numbers
with a nonzero real component are written @eal+imag) ', or can be created with theomplex(real, imag’
function.

8 Chapter 3. An Informal Introduction to Python

>>> 1j * 1J

(-1+0j)

>>> 1j * complex(0,1)
(-1+0j)

>>> 3+1j *3

(3+3))

>>> (3+1)) =*3

(9+3j))

>>> (1+2))/(1+1])
(1.5+0.5j)

Complex numbers are always represented as two floating poinbers, the real and imaginary part. To extract these
parts from a complex numberusezreal andzimag .

>>> a=1.5+0.5j
>>> a.real

1.5

>>> a.imag
0.5

The conversion functions to floating point and integigwat() , int() andlong()) don’t work for complex
numbers — there is no one correct way to convert a complex purtba real number. Usabs(2) to get its
magnitude (as a float) arreal to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sgrt(a.real ¥ 2 + a.mag ** 2)
5.0
>>>

In interactive mode, the last printed expression is assidoghe variable . This means that when you are using
Python as a desk calculator, it is somewhat easier to cantialculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user!tBrplicitly assign a value to it — you would create an
independent local variable with the same name masking titteibbwrariable with its magic behavior.

3.1. Using Python as a Calculator 9

3.1.2 Strings

Besides numbers, Python can also manipulate strings, whiclbe expressed in several ways. They can be enclosed
in single quotes or double quotes:

>>> ’'spam eggs’
'spam eggs’

>>> 'doesn\'t’
"doesn’t"

>>> "doesn't"
"doesn’t"

>>> "Yes," he said.’
"Yes," he said.’

>>> "\"Yes,\" he said."
"Yes," he said.’

>>> "|sn\'t," she said.’
"Isn\'t," she said.’

String literals can span multiple lines in several ways. t@aration lines can be used, with a backslash as the last
character on the line indicating that the next line is a lab@ontinuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines still need to be embedded in the stringglsi ; the newline following the trailing backslash is
discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is signific ant.

If we make the string literal a “raw” string, however, ttre sequences are not converted to newlines, but the backslash
at the end of the line, and the newline character in the sparedoth included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print;

This is a rather long string containing\n\
several lines of text much as you would do in C.

nm 1

Or, strings can be surrounded in a pair of matching tripletes:
when using triple-quotes, but they will be included in théngt.

or . End of lines do not need to be escaped

10 Chapter 3. An Informal Introduction to Python

print """

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations emsgame way as they are typed for input: inside quotes, and with
guotes and other funny characters escaped by backslasisbswvt the precise value. The string is enclosed in double
quotes if the string contains a single quote and no doubl¢éeguelse it's enclosed in single quotes. (Tant
statement, described later, can be used to write strindgulitquotes or escapes.)

Strings can be concatenated (glued together) with-tbperator, and repeated with

>>> word = 'Help” + A’

>>> word

'HelpA’

>>> <’ + word *5 + >’
'<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automaticallyoat@nated; the first line above could also have been written

‘word = 'Help’ 'A’ " this only works with two literals, not with arbitrary strg expressions:
>>> ’str’ 'ing’ # <- This is ok
'string’
>>> str.strip() + 'ing’ # <- This is ok
'string’
>>> ‘str'.strip() 'ing’ # <- This is invalid

File "<stdin>", line 1, in ?
'str'.strip() 'ing’
N

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the firstratter of a string has subscript (index) 0. There is no
separate character type; a character is simply a stringzefaie. Like in Icon, substrings can be specified with the
slice notation two indices separated by a colon.

>>> word[4]
A

>>> word[0:2]
He'

>>> word[2:4]
1|p1

Slice indices have useful defaults; an omitted first indefaualés to zero, an omitted second index defaults to the size
of the string being sliced.

3.1. Using Python as a Calculator 11

>>> word[:2] # The first two characters

He'

>>> word[2:] # Everything except the first two characters
ilpAl

Unlike a C string, Python strings cannot be changed. Ass@td an indexed position in the string results in an error:

>>> word[0] = X
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment
>>> word[:1] = ’'Splat’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support slice assignment

However, creating a new string with the combined contenasyand efficient:

>>> 'x’ + word[1:]

'xelpA’

>>> 'Splat’ + word[4]

'SplatA’

Here’s a useful invariant of slice operatiors§:i] + Ji:] equalss.

>>> word[:2] + word[2:]

'HelpA’

>>> word[:3] + word[3:]

'HelpA’

Degenerate slice indices are handled gracefully: an irttlbid too large is replaced by the string size, an upper bound
smaller than the lower bound returns an empty string.

>>> word[1:100]

‘elpA’
>>> word[10:]

”

>>> word[2:1]

Indices may be negative numbers, to start counting fromigfe.r-or example:

>>> word[-1] # The last character

A

>>> word[-2] # The last-but-one character

o

>>> word[-2:] # The last two characters

‘DA’

>>> word[:-2] # Everything except the last two characters
Hel

12 Chapter 3. An Informal Introduction to Python

But note that -0 is really the same as 0, so it does not count fne right!

>>> word[-0] # (since -0 equals 0)
H

Out-of-range negative slice indices are truncated, butt dorthis for single-element (non-slice) indices:

>>> word[-100:]

'HelpA’

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of thedeslias pointingetweercharacters, with the left edge
of the first character numbered 0. Then the right edge of teclaaracter of a string af characters has index for
example:

TS S S S S
[Hlel|l]p]|]A|
TS S S S S
0 1 2 3 4 5

5 -4 -3 -2 -1

The first row of numbers gives the position of the indice$0n.the string; the second row gives the corresponding
negative indices. The slice froimo j consists of all characters between the edges labheladj, respectively.

For non-negative indices, the length of a slice is the diffiee of the indices, if both are within bounds. For example,
the length ofvord[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

See Also:

Sequence Types

(../lib/typesseq.html)
Strings, and the Unicode strings described in the next@gcire examples aequence typeand support the
common operations supported by such types.

String Methods
(..Nib/string-methods.html)
Both strings and Unicode strings support a large number ¢fioas for basic transformations and searching.

String Formatting Operations

(..Nib/typesseq-strings.html)
The formatting operations invoked when strings and Unicstdags are the left operand of th&operator are
described in more detail here.

3.1. Using Python as a Calculator 13

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text datvailable to the programmer: the Unicode object. It
can be used to store and manipulate Unicode datahtgeéwww.unicode.org/) and integrates well with the existing
string objects, providing auto-conversions where necgssa

Unicode has the advantage of providing one ordinal for eebracter in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinalséoipt characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. Thib te very much confusion especially with respect to
internationalization (usually written agl8n ' — ‘i’ + 18 characters +n’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as icrgaiormal strings:

>>> u'Hello World !’
u'Hello World "

The small U’ in front of the quote indicates that a Unicode string is soggd to be created. If you want to include
special characters in the string, you can do so by using tHe®R{nicode-Escapencoding. The following example
shows how:

>>> u’Hello\u0020World !
u’Hello World "

The escape sequenug020 indicates to insert the Unicode character with the ordirslie# 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respeotidimal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that isdlisemany Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 25&ctdis of Latin-1.

For experts, there is also a raw mode just like the one for abstnings. You have to prefix the opening quote with
‘ur’ to have Python use thRaw-Unicode-Escapencoding. It will only apply the aboveiXXXX conversion if there
is an uneven number of backslashes in front of the small 'u’.

>>> ur'Hello\u0020World !
u'Hello World "’

>>> ur'Hello\u0020World V'
u’Hello\\Wu0020World ¥

The raw mode is most useful when you have to enter lots of basikss, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides aendetl of other ways of creating Unicode strings on the
basis of a known encoding.

The built-in functionunicode() provides access to all registered Unicode codecs (COddrBBRoders). Some
of the more well known encodings which these codecs can cbanalatin-1, ASCI|, UTF-8, andUTF-16. The latter
two are variable-length encodings that store each Unicbdeacter in one or more bytes. The default encoding is
normally set toascil, which passes through characters in the range 0 to 127 asxtgejny other characters with an
error. When a Unicode string is printed, written to a file, oneerted withstr() , conversion takes place using this
default encoding.

14 Chapter 3. An Informal Introduction to Python

>>> y"abc"
u'abc’
>>> str(u"abc")
‘abc’
>>> y"aol”
u’\xe4\xf6\xfc’
>>> str(u"aod™)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii’ codec can't encode character s in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a sfi@eincoding, Unicode objects provide ancode()
method that takes one argument, the name of the encodingercase names for encodings are preferred.

>>> y"aol".encode('utf-8’)
"\xc3\xa4\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce @sgponding Unicode string from it, you can use the
unicode() function with the encoding name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc’, 'utf-8’)
u\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number @ompoundiata types, used to group together other values. The mastiteris thelist,
which can be written as a list of comma-separated valuasgitbetween square brackets. List items need not all have
the same type.

>>> a = ['spam’, 'eggs’, 100, 1234]
>>> a
['spam’, 'eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists carslieed, concatenated and so on:

>>> g[0]

'spam’

>>> a[3]

1234

>>> g[-2]

100

>>> g[l:-1]

[eggs’, 100]

>>> g[:2] + [bacon’, 2 * 2]
['spam’, 'eggs’, 'bacon’, 4]

>>> 3+a[:3] + ['Boo!]

[spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'Boo!’]

Unlike strings, which arénmutableit is possible to change individual elements of a list:

3.1. Using Python as a Calculator 15

>>> g
[spam’, 'eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a

[spam’, 'eggs’, 123, 1234]

Assignment to slices is also possible, and this can evergehttue size of the list or clear it entirely:

>>> # Replace some items:

. af0:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:

. af0:2] =]

>>> g

[123, 1234]

>>> # Insert some:

. a[l:1] = [bletch’, 'xyzzy’']

>>> a

[123, 'bletch’, 'xyzzy', 1234]

>>> # Insert (a copy of) itself at the beginning

>>> g[.0] = a

>>> a

[123, ’bletch’, 'xyzzy’, 1234, 123, ’'bletch’, 'xyzzy', 123 4]
>>> # Clear the list: replace all items with an empty list
>>> af] = []

>>> g

I

The built-in functionlen() also applies to lists:

>>> len(a)
8

Itis possible to nest lists (create lists containing otrsds), for example:

>>> q = [2, 3]
>>>p = [1, q, 4]
>>> len(p)

3

>>> p[1]

(2, 3]

>>> p[1][0]

2

>>> p[l].append(’xtra’) # See section 5.1
>>>p

[1, [2, 3, 'xtra’], 4]
>>>

[2, 3, 'xtra]

Note that in the last examplp[l] andq really refer to the same object! We'll come baclotgject semantickter.

16 Chapter 3. An Informal Introduction to Python

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks ttidimgtwo and two together. For instance, we can
write an initial sub-sequence of tionacciseries as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next

..a, b=01
>>> while b < 10:
print b
a, b = b, atb

0UWN R P

This example introduces several new features.

The first line contains enultiple assignmenthe variables andb simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that tipeessions on the right-hand side are all evaluated
first before any of the assignments take place. The righttkate expressions are evaluated from the left to the
right.

Thewhile loop executes as long as the condition (hére< 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequencegatse. The test used in the example is a simple
comparison. The standard comparison operators are wilitteesame as in Gs (less than)?> (greater than)y=
(equal to) <= (less than or equal to}= (greater than or equal to) atrd (not equal to).

Thebodyof the loop isindented indentation is Python’s way of grouping statements. Pyttioes not (yet!)
provide an intelligent input line editing facility, so yowabe to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Ryttwith a text editor; most text editors have an
auto-indent facility. When a compound statement is entirtedactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess whehawrityped the last line). Note that each line within
a basic block must be indented by the same amount.

Theprint statement writes the value of the expression(s) it is giltadiffers from just writing the expression
you want to write (as we did earlier in the calculator exarapie the way it handles multiple expressions and
strings. Strings are printed without quotes, and a spacesierted between items, so you can format things
nicely, like this:

>>> | = 256 *256
>>> print 'The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

3.2.

First Steps Towards Programming 17

>>>a, b =0, 1

>>> while b < 1000:
print b,
a, b = b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it ptinésnext prompt if the last line was not completed.

18

Chapter 3. An Informal Introduction to Python

CHAPTER
FOUR

More Control Flow Tools

Besides thavhile statement just introduced, Python knows the usual contwal fitatements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type igfthestatement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < O:

x=0
print 'Negative changed to zero’
. elif x == 0:
print 'Zero’
.elif x == 1:
print 'Single’
. else:

print 'More’

There can be zero or moedif parts, and thelse part is optional. The keyworcalif ' is short for ‘else if’, and
is useful to avoid excessive indentation. #n ... elif ... elif ... sequence is a substitute for theitch or
case statements found in other languages.

4.2 for Statements

Thefor statement in Python differs a bit from what you may be used 10 or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascalpiving the user the ability to define both the iteration
step and halting condition (as C), Pythofts statement iterates over the items of any sequence (a listtong), in
the order that they appear in the sequence. For example (himfmnded):

19

>>> # Measure some strings:
. a = [cat’, 'window’, 'defenestrate’]
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated overardbp (this can only happen for mutable sequence types,
such as lists). If you need to modify the list you are itemgiiver (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this partibutamnvenient:

>>> for x in a[:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, Xx)

>>> a
[defenestrate’, 'cat’, 'window’, 'defenestrate’]

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, theibdilhctionrange() comes in handy. It generates lists
containing arithmetic progressions:

>>> range(10)
0, 1,2 3 45,6 7 8 9

The given end point is never part of the generated tetge(10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let drge start at another number, or to specify a different
increment (even negative; sometimes this is called the'ste

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combamge() andlen() as follows:

20 Chapter 4. More Control Flow Tools

>>> a = [Mary’, 'had’, 'a’, 'little’, 'lamb’]
>>> for i in range(len(a)):
print i, a[i]

0 Mary
1 had

2 a

3 little

4 lamb

4.4 Dbreak and continue Statements, and else Clauses on Loops

Thebreak statement, like in C, breaks out of the smallest enclo&ing or while loop.
Thecontinue statement, also borrowed from C, continues with the nesdtiten of the loop.

Loop statements may have alse clause; it is executed when the loop terminates throughuestiman of the list (with
for) or when the condition becomes false (withile), but not when the loop is terminated bypeeak statement.
This is exemplified by the following loop, which searchesgame numbers:

>>> for n in range(2, 10):
for x in range(2, n):
if n % x ==
print n, 'equals’, x, ' *'n/x
break
else:
loop fell through without finding a factor
print n, ’is a prime number

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 =+ 4
equals 3 * 3

4.5 pass Statements

Thepass statement does nothing. It can be used when a statementisa@gyntactically but the program requires
no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt

4.4. break and continue Statements, and else Clauses on Loops 21

4.6 Defining Functions

We can create a function that writes the Fibonacci serien trlitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
""Print a Fibonacci series up to n."™
a b=01
while b < n:
print b,
a, b = b, atb

>>> # Now call the function we just defined:
... fib(2000)
11235813 21 34 55 89 144 233 377 610 987 1597

The keyworddef introduces a functiodefinition It must be followed by the function name and the parentleedist

of formal parameters. The statements that form the bodyediihction start at the nextline, and must be indented. The
first statement of the function body can optionally be a gtliteral; this string literal is the function’s documernitat
string, ordocstring

There are tools which use docstrings to automatically pcedunline or printed documentation, or to let the user
interactively browse through code; it's good practice tolude docstrings in code that you write, so try to make a
habit of it.

Theexecutiorof a function introduces a new symbol table used for the leaghbles of the function. More precisely,
all variable assignments in a function store the value indbal symbol table; whereas variable references first laok i
the local symbol table, then in the global symbol table, dmhtin the table of built-in names. Thus, global variables
cannot be directly assigned a value within a function (unlemmed in aglobal statement), although they may be
referenced.

The actual parameters (arguments) to a function call aredaoted in the local symbol table of the called function
when it is called; thus, arguments are passed usatigoy value(where thevalueis always an objeatference not
the value of the objecf) When a function calls another function, a new local symbloletds created for that call.

A function definition introduces the function name in theremt symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defimedtibn. This value can be assigned to another name which
can then also be used as a function. This serves as a gemezalingg mechanism:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> f(100)
11235813 21 34 55 89

You might object thafib is not a function but a procedure. In Python, like in C, praged are just functions that
don’treturn a value. In fact, technically speaking, praged do return a value, albeit a rather boring one. This value
is calledNone (it's a built-in name). Writing the valuBlone is normally suppressed by the interpreter if it would be
the only value written. You can see it if you really want to:

1Actually, call by object referencavould be a better description, since if a mutable object &sed, the caller will see any changes the callee
makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

>>> print fib(0)
None

It is simple to write a function that returns a list of the nuenbof the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
""Return a list containing the Fibonacci series up to n.
result =]
a b=01
while b < n:
result.append(b) # see below
a, b = b, atb
return result

>>> f100 = fib2(100) # call it
>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Pythondeatur

e Thereturn statement returns with a value from a functioeturn without an expression argument returns
None. Falling off the end of a procedure also retuNene.

* The statementesult.append(b) calls amethodof the list objectresult . A method is a function that
‘belongs’ to an object and is nametj.methodname , whereobj is some object (this may be an expression),
andmethodname is the name of a method that is defined by the object’s typdefifit types define different
methods. Methods of different types may have the same nathewticausing ambiguity. (Itis possible to define
your own object types and methods, ustigssesas discussed later in this tutorial.) The metlapgpend()
shown in the example is defined for list objects; it adds a nement at the end of the list. In this exampleitis
equivalenttoresult = result + [b] ', but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable numiiearguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one orerayguments. This creates a function that can be called
with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, complaint="Yes or no, pleas el:
while True:
ok = raw_input(prompt)
if ok in (y', 'ye', 'yes’): return True
if ok in ('n’, 'no’, 'nop’, 'nope’): return False
retries = retries - 1
if retries < 0: raise |OError, 'refusenik user’
print complaint

4.7. More on Defining Functions 23

This function can be called either like thisisk_ok('Do you really want to quit?’) or like this:
ask_ok('OK to overwrite the file?’, 2)

This example also introduces the keyword. This tests whether or not a sequence containsairceetlue.

The default values are evaluated at the point of functiomdfn in thedefiningscope, so that

i=5

def f(arg=i):
print arg

i =6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a difieg when the default is a mutable
object such as a list, dictionary, or instances of most elas§or example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequadist you can write the function like this instead:

def f(a, L=None):
if L is None:
L=1]
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments ofdtre fkeyword = valué€. For instance, the following
function:

24 Chapter 4. More Control Flow Tools

def parrot(voltage, state="a stiff’, action="voom’, type ='Norwegian Blue’):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "!"

could be called in any of the following ways:

parrot(1000)

parrot(action = 'VOOOOOM’, voltage = 1000000)
parrot('a thousand’, state = ’pushing up the daisies’)
parrot('a million’, 'bereft of life’, 'jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead’) # non-keyword argument follo wing keyword
parrot(110, voltage=220) # duplicate value for argument

parrot(actor="John Cleese’) # unknown keyword

In general, an argument list must have any positional argisni®llowed by any keyword arguments, where the
keywords must be chosen from the formal parameter namesndt important whether a formal parameter has a
default value or not. No argument may receive a value mone ¢timee — formal parameter names corresponding to
positional arguments cannot be used as keywords in the saliaetdere’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argu ment ’a’

When a final formal parameter of the form nameis present, it receives a dictionary containing all keywargu-
ments except for those corresponding to a formal paramé&hes. may be combined with a formal parameter of the
form * name(described in the next subsection) which receives a tupléaiing the positional arguments beyond the
formal parameter list.x(namemust occur beforex name) For example, if we define a function like this:

def cheeseshop(kind, *arguments, * keywords):
print "-- Do you have any", kind, '?’
print "-- I'm sorry, we're all out of', kind
for arg in arguments: print arg
print -’ * 40

keys = keywords.keys()
keys.sort()
for kw in keys: print kw, "', keywords[kw]

It could be called like this:

4.7. More on Defining Functions 25

cheeseshop('Limburger’, "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="John Cleese’,
shopkeeper="Michael Palin’,
sketch="Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?

- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that thesort() method of the list of keyword argument names is called befoirting the contents of the
keywords dictionary; if this is not done, the order in which the arguntseare printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify thétinction can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple. Belfiergdriable number of arguments, zero or more normal
arguments may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are alieadyst or tuple but need to be unpacked for a function
call requiring separate positional arguments. For ingatihe built-inrange() function expects separas¢éart and
stoparguments. If they are not available separately, writetinetion call with the- -operator to unpack the arguments
out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword amgpuswith thesx -operator:

26 Chapter 4. More Control Flow Tools

>>> def parrot(voltage, state="a stiff’, action="voom’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "volts through it.",
print "E's", state, "I"

>>> d = {"voltage": "four million", "state": "bleedin’ demi sed", "action": "VOOM"}
>>> parrot(** d)
-- This parrot wouldn't VOOM if you put four million volts thr ough it. E's bleedin’ demised !

4.75 Lambda Forms

By popular demand, a few features commonly found in funetignogramming languages like Lisp have been added
to Python. With thdambda keyword, small anonymous functions can be created. Herkiscion that returns
the sum of its two argumentsambda a, b: at+b ’'. Lambda forms can be used wherever function objects are
required. They are syntactically restricted to a singlereggion. Semantically, they are just syntactic sugar for a
normal function definition. Like nested function definitjytambda forms can reference variables from the containing
scope:

>>> def make_incrementor(n):
return lambda x: X + n

>>> f = make_incrementor(42)
>>> f(0)

42

>>> f(1)

43

4.7.6 Documentation Strings

There are emerging conventions about the content and fongatf documentation strings.

The first line should always be a short, concise summary obliject’'s purpose. For brevity, it should not explicitly
state the object's name or type, since these are availabtehgy means (except if the name happens to be a verb
describing a function’s operation). This line should begith a capital letter and end with a period.

If there are more lines in the documentation string, the séd¢ioe should be blank, visually separating the summary
from the rest of the description. The following lines sholédone or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from mulg-btring literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is donengghe following convention. The first non-blank linéer

the first line of the string determines the amount of indémtator the entire documentation string. (We can'’t use
the first line since it is generally adjacent to the stringigning quotes so its indentation is not apparent in thegstrin
literal.) Whitespace “equivalent” to this indentationleh stripped from the start of all lines of the string. Linleatt
are indented less should not occur, but if they occur alfrtleeiding whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (tod@spaormally).

Here is an example of a multi-line docstring:

4.7. More on Defining Functions 27

>>> def my_function():
""Do nothing, but document it.

No, really, it doesn’t do anything.

pass

>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn't do anything.

28

Chapter 4. More Control Flow Tools

CHAPTER
FIVE

Data Structures

This chapter describes some things you've learned abaadrin more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of theoheof list objects:

append(x)
Add an item to the end of the list; equivalentaflen(a):] = | X .

ext end(L)
Extend the list by appending all the items in the given ligyigalent toa[len(a):] = L.

i nsert (i, x)
Insert an item at a given position. The first argument is thdexnof the element before which to in-
sert, soa.insert(0, X) inserts at the front of the list, analinsert(len(a), X) is equivalent to
a.append(x).

renove(x)
Remove the first item from the list whose valueidt is an error if there is no such item.

pop([i])

Remove the item at the given position in the list, and rettrdfino index is specifieda.pop() removes
and returns the last item in the list. (The square bracketsral thei in the method signature denote that
the parameter is optional, not that you should type squaaekipis at that position. You will see this notation
frequently in thePython Library Referenck

i ndex(x)
Return the index in the list of the first item whose valug.i# is an error if there is no such item.

count (x)
Return the number of timesappears in the list.

sort ()
Sort the items of the list, in place.

reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

29

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count(’x’)
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]

>>> a.sort()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack,antherlast element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stackeappend() . To retrieve an item from the top of the
stack, usgop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop()

7

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5
>>> stack
(3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where thelinstent added is the first element retrieved (“first-in,
first-out”). To add an item to the back of the queue, append() . To retrieve an item from the front of the queue,
usepop() with O as the index. For example:

30 Chapter 5. Data Structures

>>> queue = ['Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

'Eric’

>>> queue.pop(0)

"John’

>>> queue

[Michael’, 'Terry’, 'Graham’]

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful wheed with listsfilter() ,map() , andreduce()

“filter(function sequencg’ returns a sequence consisting of those items from the segufr whichfunc-
tion(item) is true. Ifsequencés astring ortuple , the result will be of the same type; otherwise, it is always a
list . For example, to compute some primes:

>>> def f(x): return x % 2 = 0 and x % 3 =0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function sequencg’ calls functior(item) for each of the sequence’s items and returns a list of therretu
values. For example, to compute some cubes:

>>> def cube(x): return x * Xk X

>>> map(cube, range(l, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function mustakrerah many arguments as there are sequences and
is called with the corresponding item from each sequenc®&l¢me if some sequence is shorter than another). For
example:

>>> seq = range(8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

‘reduce(function sequencg’ returns a single value constructed by calling the binanctionfunctionon the first
two items of the sequence, then on the result and the next &achso on. For example, to compute the sum of the
numbers 1 through 10:

5.1. More on Lists 31

>>> def add(x,y): return x+y

>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is retdrifehe sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting vafuthis case the starting value is returned for an empty
sequence, and the function is first applied to the startitigevand the first sequence item, then to the result and the
next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sum(][])

0

Don't use this example’s definition gum() : since summing numbers is such a common need, a built-irtibkmc
sum(sequencgis already provided, and works exactly like this. New in i@ns.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create listisowt resorting to use ahap() , filter() and/or
lambda . The resulting list definition tends often to be clearer tliats built using those constructs. Each list
comprehension consists of an expression followed foy aclause, then zero or mofer orif clauses. The result
will be a list resulting from evaluating the expression ie ttontext of thdor andif clauses which follow it. If the
expression would evaluate to a tuple, it must be parentbesiz

32 Chapter 5. Data Structures

>>> freshfruit = [banana’, loganberry ’, 'passion fruit °’]
>>> [weapon.strip() for weapon in freshfruit]
[banana’, ’'loganberry’, 'passion fruit’]
>>> vec = [2, 4, 6]
>>> [3 *x for x in vec]
[6, 12, 18]
>>> [3 xx for x in vec if x > 3]
[12, 18]
>>> [3 *x for x in vec if x < 2]
I
>>> [[x,x ** 2] for x in vec]
[[2, 41, [4, 16], [6, 36]]
>>> [x, X * 2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x = 2 for x in vec]
N
SyntaxError: invalid syntax
>>> [(x, x **2) for x in vec]
(2, 4), (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x xy for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vecl[i] *vec2[i] for i in range(len(vecl))]
[8, 12, -54]

List comprehensions are much more flexible ttmaap() and can be applied to complex expressions and nested
functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[3.1', '3.14", '3.142", '3.1416’, '3.14159’]

5.2 The del statement

There is a way to remove an item from a list given its indexaadtof its value: theel statement. This differs from
thepop()) method which returns a value. Thel statement can also be used to remove slices from a list ar clea
the entire list (which we did earlier by assignment of an gntipt to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]
>>> del a[:]

>>> a

I

5.2. The del statement 33

del can also be used to delete entire variables:

>>> del a

Referencing the name hereafter is an error (at least until another value is assida it). We'll find other uses for
del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common propertieb, &siindexing and slicing operations. They are two
examples okequencalata types. Since Python is an evolving language, otheresegudata types may be added.
There is also another standard sequence data typauphe

A tuple consists of a number of values separated by commasisiance:

>>> t = 12345, 54321, ’hello!

>>> {[0]

12345

>>> t

(12345, 54321, ’hello!)

>>> # Tuples may be nested:
.u=1t (1, 2, 3, 4, 5)

>>> U

((12345, 54321, ’hello!), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in paresgthss that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, alifnoften parentheses are necessary anyway (if the tuple
is part of a larger expression).

Tuples have many uses. For example: (X, y) coordinate painployee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to tlidvidual items of a tuple (you can simulate much of the
same effect with slicing and concatenation, though). It3e possible to create tuples which contain mutable ohjects
such as lists.

A special problem is the construction of tuples containing Q@ items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty fg@@irentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to encl@ssingle value in parentheses). Ugly, but effective. For
example:

>>> empty = ()

>>> singleton = ’'hello’, # <-- note trailing comma
>>> len(empty)

0

>>> |en(singleton)

1

>>> singleton

(hello’,)

The statemertt = 12345, 54321, ’'hello” is an example ofuple packingthe valuesl2345 , 54321 and
'hello! are packed together in a tuple. The reverse operation ipalssible:

34 Chapter 5. Data Structures

>>> X, Y,z =t

This is called, appropriately enougsequence unpackingsequence unpacking requires the list of variables on the
left to have the same number of elements as the length of theeeee. Note that multiple assignment is really just a
combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple galalways creates a tuple, and unpacking works for any
sequence.

5.4 Sets

Python also includes a data type &ats A set is an unordered collection with no duplicate elemetasic uses
include membership testing and eliminating duplicateiestrSet objects also support mathematical operations like
union, intersection, difference, and symmetric differenc

Here is a brief demonstration:

>>> basket = ['apple’, 'orange’, 'apple’, 'pear’, 'orange’ , 'banana’]
>>> fruit = set(basket) # create a set without duplicates

>>> fruit

set(['orange’, 'pear’, 'apple’, 'banana’])

>>> ’'orange’ in fruit # fast membership testing

True

>>> ‘crabgrass’ in fruit

False

>>> # Demonstrate set operations on unique letters from two w ords
>>> a = set('abracadabra’)

>>> b = set('alacazam’)

>>> a # unique letters in a

set([a’, 'r, 'b’, 'c’, 'd])

>>> a - b # letters in a but not in b
set(['r, 'd’, 'b7)

>>>a|b # letters in either a or b
set(a’, 'c’, 'r, 'd’, b, 'm’, 'z, I

>>a &b # letters in both a and b
set([a’, 'c)

>>> a b # letters in a or b but not both

Set([,r’, vdyy va’ 1m1’ ,Z’, xlx])

5.5 Dictionaries

Another useful data type built into Python is thitionary. Dictionaries are sometimes found in other languages
as “associative memories” or “associative arrays”. UnBleguences, which are indexed by a range of numbers,
dictionaries are indexed geys which can be any immutable type; strings and numbers caayallve keys. Tuples
can be used as keys if they contain only strings, numbersjpdeg; if a tuple contains any mutable object either
directly or indirectly, it cannot be used as a key. You cast lists as keys, since lists can be modified in place using
index assignments, slice assignments, or methodsipkend() andextend()

It is best to think of a dictionary as an unordered séteyf: valuepairs, with the requirement that the keys are unique

5.4. Sets 35

(within one dictionary). A pair of braces creates an emptyidnary:{} . Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to thiaichary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value vaitheskey and extracting the value given the key. Itis also
possible to delete a key:value pair widkl . If you store using a key that is already in use, the old vaksoeiated
with that key is forgotten. It is an error to extract a valugngsa non-existent key.

Thekeys() method of a dictionary object returns a list of all the keysdis the dictionary, in arbitrary order (if you
want it sorted, just apply theort() method to the list of keys). To check whether a single key thédictionary,
either use the dictionarylsas_key() method or then keyword.

Here is a small example using a dictionary:

>>> tel = {jack’: 4098, ’'sape’ 4139}
>>> tel['guido’] = 4127

>>> tel

{'sape’: 4139, ’'guido’: 4127, ’jack’: 4098}
>>> tel['jack’]

4098

>>> del tel['sape’]

>>> tellirv'] = 4127

>>> tel

{'guido’: 4127, ’irv: 4127, ’jack’: 4098}
>>> tel.keys()

['guido’, 'irv’, 'jack’]

>>> tel.has_key('guido’)

True

>>> ’guido’ in tel

True

Thedict() constructor builds dictionaries directly from lists of keglue pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly spelsékey-value list.

>>> dict([('sape’, 4139), ('guido’, 4127), (jack’, 4098))
{'sape’: 4139, ’jack’: 4098, 'guido’: 4127}
>>> dict([(x, X + 2) for x in (2, 4, 6)]) # use a list comprehension

{2: 4, 4. 16, 6: 36}

Later in the tutorial, we will learn about Generator Expiess which are even better suited for the task of supplying
key-values pairs to theict() constructor.

When the keys are simple strings, it is sometimes easierttifypairs using keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape’: 4139, ’jack’: 4098, ’'guido’ 4127}

5.6 Looping Techniques

When looping through dictionaries, the key and correspumdalue can be retrieved at the same time using the
iteritems() method.

36 Chapter 5. Data Structures

>>> knights = {'gallahad’: 'the pure’, 'robin’: 'the brave’ }
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index an@ésponding value can be retrieved at the same time using
theenumerate() function.

>>> for i, v in enumerate(['tic’, 'tac’, 'toe’]):
print i, v

0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the naiebe paired with thap() function.

>>> questions = ['name’, 'quest’, 'favorite color’]
>>> answers = [lancelot’, 'the holy grail’, 'blue’]
>>> for g, a in zip(questions, answers):
print 'What is your %s? It is %s.” % (g, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequerecéorward direction and then call tleversed()
function.

>>> for i in reversed(xrange(1,10,2)):
print i

P WO~ ©:;

To loop over a sequence in sorted order, usestiteed() ~ function which returns a new sorted list while leaving the
source unaltered.

5.6. Looping Techniques 37

’

>>> basket = ['apple’, 'orange’, 'apple’, 'pear’, 'orange
>>> for f in sorted(set(basket)):
print f

, 'banana’]

apple
banana
orange
pear

5.7 More on Conditions

The conditions used iwhile andif statements can contain any operators, not just comparisons

The comparison operatars andnot in check whether avalue occurs (does not occur) in a sequeheapkerators
is andis not compare whether two objects are really the same objectptilismatters for mutable objects like
lists. All comparison operators have the same priority,clutis lower than that of all numerical operators.

Comparisons can be chained. For examples b == c tests whethea is less tharb and moreoveb equalsc.

Comparisons may be combined using the Boolean operatarandor , and the outcome of a comparison (or of any
other Boolean expression) may be negated with. These have lower priorities than comparison operatots;den
them,not has the highest priority arat the lowest, so thad and not B or C isequivalenttqA and (not

B)) or C . As always, parentheses can be used to express the desinpdsiton.

The Boolean operatornd andor are so-calleghort-circuitoperators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is detedmFor example, ih andC are true buB is false,A

and B and C does not evaluate the expressionWhen used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated @uejut.

Itis possible to assign the result of a comparison or oth@i&am expression to a variable. For example,

>>> stringl, string2, string3 = ", 'Trondheim’, '"Hammer Da nce’
>>> non_null = stringl or string2 or string3

>>> non_null

"Trondheim’

Note that in Python, unlike C, assignment cannot occur esixpressions. C programmers may grumble about this,
but it avoids a common class of problems encountered in Oranog typing= in an expression wher= was intended.

5.8 Comparing Sequences and Other Types

Sequence objects may be compared to other objects withrieesequence type. The comparison Useisographical
ordering: first the first two items are compared, and if thdfedthis determines the outcome of the comparison; if
they are equal, the next two items are compared, and so ahgithér sequence is exhausted. If two items to be
compared are themselves sequences of the same type, tagl@phical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences ai@sredssqual. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) baxicographical ordering for strings uses t&cli
ordering for individual characters. Some examples of caiapas between sequences of the same type:

38 Chapter 5. Data Structures

1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'ABC’ < 'C’ < 'Pascal’ < 'Python’

@@, 2, 3, 4 < (1, 2, 4)

1, 2) < (1, 2, -1)

1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (aa’, 'ab)) < (1, 2, (abc, 'a), 4)

Note that comparing objects of different types is legal. Blécome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller thariregsia string is always smaller than a tuple, étdlixed
numeric types are compared according to their numeric yalu8é equals 0.0, etc.

1The rules for comparing objects of different types shoultlorelied upon; they may change in a future version of thguage.

5.8. Comparing Sequences and Other Types 39

40

CHAPTER
SIX

Modules

If you quit from the Python interpreter and enter it agaie, definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer pamgyryou are better off using a text editor to prepare the
input for the interpreter and running it with that file as injnstead. This is known as creatingseript As your
program gets longer, you may want to split it into severakffler easier maintenance. You may also want to use a
handy function that you've written in several programs withcopying its definition into each program.

To support this, Python has a way to put definitions in a filewsathem in a script or in an interactive instance of the
interpreter. Such a file is calledraodule definitions from a module can bmportedinto other modules or into the
mainmodule (the collection of variables that you have access toscript executed at the top level and in calculator

mode).

A module is a file containing Python definitions and statemeiie file name is the module name with the suffix
‘.py’ appended. Within a module, the module’s name (as a strimg@yailable as the value of the global variable
__name___. For instance, use your favorite text editor to create a élied fibo.py’ in the current directory with the

following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=01
while b < n:

print b,
a, b = b, atb

def fib2(n): # return Fibonacci series up to n

result =]

a, b=01

while b < n:
result.append(b)
a, b = b, atb

return result

Now enter the Python interpreter and import this module ithfollowing command:

>>> import fibo

This does not enter the names of the functions defindéithan directly in the current symbol table; it only enters the
module naméibo there. Using the module name you can access the functions:

41

>>> fibo.fib(1000)

112358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

fibo’

If you intend to use a function often you can assign it to alloaane:

>>> fib = fibo.fib
>>> fib(500)
11235813 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as umdéifinitions. These statements are intended to initialize
the module. They are executed only fivet time the module is imported somewhére.

Each module has its own private symbol table, which is useti@global symbol table by all functions defined in

the module. Thus, the author of a module can use global Vasgaty the module without worrying about accidental

clashes with a user’s global variables. On the other hanaifknow what you are doing you can touch a module’s
global variables with the same notation used to refer taitsfionsmodname.itemname .

Modules can import other modules. It is customary but notiiregl to place alimport statements at the beginning
of a module (or script, for that matter). The imported modudenes are placed in the importing module’s global
symbol table.

There is a variant of themport statement that imports names from a module directly intartigorting module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
11235813 21 34 55 89 144 233 377

This does notintroduce the module name from which the insgaoe taken in the local symbol table (so in the example,
fibo is not defined).

There is even a variant to import all names that a module define

>>> from fibo import *
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an undeey).

1In fact function definitions are also ‘statements’ that @eetuted’; the execution enters the function name in theuhedglobal symbol table.

42 Chapter 6. Modules

6.1.1 The Module Search Path

When a module namespam is imported, the interpreter searches for a file nanspdrh.py’ in the current directory,
and then in the list of directories specified by the environtwariable PYTHONPATH. This has the same syntax as
the shell variable PATH, that s, a list of directory namesaft PYTHONPATH is not set, or when the file is not found
there, the search continues in an installation-dependagatll path; on Wix, this is usually :/usr/local/lib/python’.

Actually, modules are searched in the list of directorie@ggiby the variablsys.path which is initialized from the
directory containing the input script (or the current diogg), PYTHONPATH and the installation-dependent default
This allows Python programs that know what they're doing tudify or replace the module search path. Note that
because the directory containing the script being run ishersearch path, it is important that the script not have the
same name as a standard module, or Python will attempt tahesstript as a module when that module is imported.
This will generally be an error. See section 6.2, “Standaadiies,” for more information.

6.1.2 “Compiled” Python files

As an important speed-up of the start-up time for short mogrthat use a lot of standard modules, if a file called
‘spam.pyc’ exists in the directory wherespam.py’ is found, this is assumed to contain an already-“byte-cibedp
version of the modulspam. The modification time of the version afpam.py’ used to createspam.pyc’ is recorded

in ‘spam.pyc’, and the ‘pyc’ file is ignored if these don’t match.

Normally, you don’t need to do anything to create thgam.pyc’ file. Whenever spam.py’ is successfully compiled,
an attempt is made to write the compiled versiorsttam.pyc'. It is not an error if this attempt fails; if for any reason
the file is not written completely, the resultingpam.pyc’ file will be recognized as invalid and thus ignored latereTh
contents of thespam.pyc’ file are platform independent, so a Python module directany be shared by machines of
different architectures.

Some tips for experts:

< When the Python interpreter is invoked with #& flag, optimized code is generated and storedgyo’ files.
The optimizer currently doesn’t help much; it only remoassert statements. Whet© is usedall bytecode
is optimized;.pyc files are ignored angyy files are compiled to optimized bytecode.

 Passing twoO flags to the Python interpretexdO) will cause the bytecode compiler to perform optimizations
that could in some rare cases result in malfunctioning @og: Currently only _doc__ strings are removed
from the bytecode, resulting in more compagiyé’ files. Since some programs may rely on having these
available, you should only use this option if you know whatiye doing.

< A program doesn’t run any faster when it is read frompgc” or * .pyo’ file than when itis read from apy’ file;
the only thing that’s faster aboupyc’ or ‘ .pyo’ files is the speed with which they are loaded.

* When a script is run by giving its name on the command line iifitecode for the script is never written to a
“.pyc’ or ‘.pyo’ file. Thus, the startup time of a script may be reduced by mgwnost of its code to a module
and having a small bootstrap script that imports that moditlis also possible to name ayc’ or * .pyo’ file
directly on the command line.

* Itis possible to have a file calledgam.pyc’ (or ‘ spam.pyo’ when -O is used) without a filespam.py’ for the
same module. This can be used to distribute a library of Rytieole in a form that is moderately hard to reverse
engineer.

« The modulecompileall ~ can create.pyc’ files (or ‘.pyo’ files when-O is used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, describhea separate document, tRgthon Library Reference
(“Library Reference” hereafter). Some modules are buiti the interpreter; these provide access to operationatbat

6.2. Standard Modules 43

not part of the core of the language but are neverthelessibudither for efficiency or to provide access to operating
system primitives such as system calls. The set of such rasdkib configuration option which also depends on the
underlying platform For example, tteenoeba module is only provided on systems that somehow support Aaoe
primitives. One particular module deserves some attensga , which is built into every Python interpreter. The
variablesys.psl andsys.ps2 define the strings used as primary and secondary prompts:

>>> jmport sys
>>> sys.psl
>>>

>>> sys.ps2

>>> sys.psl = 'C> "’
C> print "Yuck!
Yuck!

C>

These two variables are only defined if the interpreter isiaractive mode.

The variablesys.path s a list of strings that determines the interpreter’'s seaath for modules. It is initialized
to a default path taken from the environment variable PYTHRNH, or from a built-in default if PYTHONPATH is

not set. You can modify it using standard list operations:

>>> jmport sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 Thedir() Function

The built-in functiondir() is used to find out which names a module defines. It returnstadstist of strings:

>>> import fibo, sys

>>> dir(fibo)

[__name__’, 'fib’, 'fib2]

>>> dir(sys)

[__displayhook__’, ' doc__’, '__excepthook ', ' na
' stdin__", '__stdout__’, '_getframe’, 'api_version’,
‘builtin_module_names’, 'byteorder’, 'callstats’, 'cop
‘displayhook’, 'exc_clear’, 'exc_info’, 'exc_type’, 'ex
‘exec_prefix’, 'executable’, 'exit’, 'getdefaultencodi
‘getrecursionlimit’, 'getrefcount’, hexversion’, 'max
'meta_path’, 'modules’, 'path’, 'path_hooks’, 'path_imp
‘platform’, ’prefix’, 'psl’, 'ps2’, 'setcheckinterval’,
'setprofile’, 'setrecursionlimit’, 'settrace’, 'stderr
'version’, 'version_info’, 'warnoptions’]

Without argumentg]ir() lists the names you have defined currently:

me__’, '__stderr__’,
‘argv’,
yright’,
cepthook’,

ng’, 'getdlopenflags’,

int’, 'maxunicode’,
orter_cache’,
'setdlopenflags’,

, 'stdin’, 'stdout’,

44

Chapter 6. Modules

>>> a = [1, 2, 3, 4, 5]

>>> jmport fibo

>>> fib = fibo.fib

>>> dir()

[__builtins_ ', ' doc__’, ' file_ ', '__name_ ', & , 'fib’, "fibo’, 'sys’]

Note that it lists all types of names: variables, modulescfions, etc.

dir() does not list the names of built-in functions and variablégou want a list of those, they are defined in the
standard module builtin__

>>> import __ builtin__
>>> dir(__builtin__)

['ArithmeticError’, 'AssertionError’, AttributeError ', 'DeprecationWarning’,

'EOFError’, 'Ellipsis’, 'EnvironmentError’, 'Exception ', 'False’,
'FloatingPointError’, 'FutureWarning’, 'lOError’, 'Imp ortError’,
‘IndentationError’, 'IndexError’, 'KeyError’, 'Keyboar dinterrupt’,
'LookupError’, 'MemoryError’, 'NameError’, 'None’, 'Not Implemented’,
'NotimplementedError’, 'OSError’, 'OverflowError’,

'PendingDeprecationWarning’, 'ReferenceError’, 'Runti meError’,
'RuntimeWarning’, 'StandardError’, 'Stoplteration’, 'S yntaxError’,
'SyntaxWarning’, 'SystemError’, 'SystemExit’, 'TabErro r', 'True’,
"TypeError’, 'UnboundLocalError’, 'UnicodeDecodeError '
'UnicodeEncodeError’, 'UnicodeError’, 'UnicodeTransla teError’,
'UserWarning’, 'ValueError’, 'Warning’, 'WindowsError’ ,
'ZeroDivisionError’, ' ', '_debug__ ', '_doc__’, '__im port__’,
'_name__’, 'abs’, 'apply’, 'basestring’, 'bool’, 'buffe r,
‘callable’, 'chr’, ’classmethod’, 'cmp’, 'coerce’, 'comp ile’,
‘complex’, 'copyright’, ‘credits’, 'delattr’, 'dict’, 'd ir', 'divmod’,
‘'enumerate’, 'eval’, 'execfile’, 'exit’, ‘file’, 'filter ', 'float’,
'frozenset’, 'getattr’, 'globals’, 'hasattr’, ’hash’, 'h elp’, ’hex’,
id’, 'input’, int’, 'intern’, ’isinstance’, 'issubclas s’, 'iter,
‘len’, ’license’, ’list’, ’locals’, 'long’, 'map’, 'max’, 'min’,
‘object’, 'oct’, 'open’, 'ord’, 'pow’, 'property’, 'quit’ , 'range’,
raw_input’, 'reduce’, 'reload’, 'repr’, 'reversed’, 'ro und’, ’'set’,
'setattr’, 'slice’, 'sorted’, 'staticmethod’, 'str’, 'su m’, 'super’,
‘tuple’, ’type’, 'unichr’, 'unicode’, 'vars’, 'xrange’, ’ zip']

6.4 Packages

Packages are a way of structuring Python’s module namedpauasing “dotted module names”. For example, the
module nameé\.B designates a submodule nam&dih a package named\'. Just like the use of modules saves the
authors of different modules from having to worry about eaitter’s global variable names, the use of dotted module
names saves the authors of multi-module packages like Nuunihe Python Imaging Library from having to worry
about each other’s module names.

Suppose you want to design a collection of modules (a “paeRdgr the uniform handling of sound files and sound
data. There are many different sound file formats (usuattpgaized by their extension, for examplavav’, * .aiff’,
‘.au’), so you may need to create and maintain a growing collaaifonodules for the conversion between the various
file formats. There are also many different operations yoghinwant to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating &fical stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operatidei®’s a possible structure for your package (expressed

6.4. Packages 45

in terms of a hierarchical filesystem):

Sound/ Top-level package

__init__.py Initialize the sound package

Formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through teetdiies orsys.path looking for the package subdi-
rectory.

directories with a common name, suchstsihg ', from unintentionally hiding valid modules that occurdabn the
module search path. In the simplest caseirlit__.py’ can just be an empty file, but it can also execute initialzat
code for the package or settheall variable, described later.

The ' __init__.py’files are required to make Python treat the directories asaioing packages; this is done to prevent

Users of the package can import individual modules from #ekpge, for example:

import Sound.Effects.echo

This loads the submodufound.Effects.echo . It must be referenced with its full name.

Sound.Effects.echo.echofilter(input, output, delay=0. 7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodwdeho , and makes it available without its package prefix, so it Ganded as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function aiiafle directly:

46 Chapter 6. Modules

from Sound.Effects.echo import echofilter

Again, this loads the submodudeho , but this makes its functioachofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when usinfjom packageimport item the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like adanclass or variable. Thiemport statement first
tests whether the item is defined in the package; if not, itrass it is a module and attempts to load it. If it fails to
find it, anlmportError exception is raised.

Contrarily, when using syntax likenport item.subitem.subsubiteeach item except for the last must be a package;
the last item can be a module or a package but can't be a cléigssation or variable defined in the previous item.

6.4.1 Importing * From a Package

Now what happens when the user wrifesm Sound.Effects import *? |deally, one would hope that this
somehow goes out to the filesystem, finds which submodulesrasent in the package, and imports them all. Un-
fortunately, this operation does not work very well on Mad &indows platforms, where the filesystem does not
always have accurate information about the case of a fileh@methese platforms, there is no guaranteed way to
know whether a fileECHO.PY’ should be imported as a moduteho , Echo or ECHO(For example, Windows 95
has the annoying practice of showing all file names with atalipéd first letter.) The DOS 8+3 filename restriction
adds another interesting problem for long module names.

The only solution is for the package author to provide anieiphdex of the package. The import statement uses
the following convention: if a package’s ‘init__.py’ code defines a list named all__ , it is taken to be the list

of module names that should be imported wifrem packageimport * is encountered. It is up to the package
author to keep this list up-to-date when a new version of Hekpge is released. Package authors may also decide not
to support it, if they don’t see a use for importing * from thpackage. For example, the filBdunds/Effects/__init_-

_.py’ could contain the following code:

_all__ = ["echo", "surround", "reverse"]

This would mean thafrom Sound.Effects import * would import the three hamed submodules of the
Sound package.

If __all__ is not defined, the statemefitom Sound.Effects import * doesnotimport all submodules
from the packag&ound.Effects into the current namespace; it only ensures that the packaged. Effects

has been imported (possibly running any initializationead *__init__.py’) and then imports whatever names are
defined in the package. This includes any names defined (domdaglules explicitly loaded) by ‘init__.py’. It also
includes any submodules of the package that were expliodlyed by previous import statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are impartéeicurrent namespace because they are defined in the
Sound.Effects package when thigom...import statement is executed. (This also works whenll__ is
defined.)

Note that in general the practice of importihdrom a module or package is frowned upon, since it often capserly

6.4. Packages a7

readable code. However, it is okay to use it to save typingteractive sessions, and certain modules are designed to
export only names that follow certain patterns.

Remember, there is nothing wrong with usiingm Package import specific_submodule I'In fact, this
is the recommended notation unless the importing moduldsiteeuse submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For exathplurround module might use thecho module.
In fact, such references are so common thairtiport statement first looks in the containing package before lapki
in the standard module search path. Thussilmeound module can simply usenport echo or from echo
import echofilter . If the imported module is not found in the current packade (package of which the
current module is a submodule), timeport statement looks for a top-level module with the given name.

When packages are structured into subpackages (as witbotlned package in the example), there’s no shortcut to
refer to submodules of sibling packages - the full name oftligpackage must be used. For example, if the module
Sound.Filters.vocoder needs to use thecho module in theSound.Effects package, it can usieom
Sound.Effects import echo

Starting with Python 2.5, in addition to the implicit relaiimports described above, you can write explicit relative
imports with thefrom module import name form of import statement. These explicit relative importeu
leading dots to indicate the current and parent packagest/e in the relative import. From treurround module

for example, you might use:

from . import echo
from .. import Formats
from ..Filters import equalizer

Note that both explicit and implicit relative imports areskd on the name of the current module. Since the name
of the main module is always main__" , modules intended for use as the main module of a Pythoncapioln
should always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attributg@gath . This is initialized to be a list containing the name of the
directory holding the package’s ‘init__.py’ before the code in that file is executed. This variable camloelified,;
doing so affects future searches for modules and subpaskagéained in the package.

While this feature is not often needed, it can be used to extemset of modules found in a package.

48 Chapter 6. Modules

CHAPTER
SEVEN

Input and Output

There are several ways to present the output of a programpdatbe printed in a human-readable form, or written to
a file for future use. This chapter will discuss some of thesjimlities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing valuespression statemerasd theprint statement. (A third way
is using thewrite() method of file objects; the standard output file can be retm@mssys.stdout . See the
Library Reference for more information on this.)

Often you’ll want more control over the formatting of yourtput than simply printing space-separated values. There
are two ways to format your output; the first way is to do all gtieng handling yourself; using string slicing and
concatenation operations you can create any layout younsagine. The standard modud&ing contains some
useful operations for padding strings to a given column lwitliese will be discussed shortly. The second way is to use
the%operator with a string as the left argument. Bhaperator interprets the left argument much likepaintf() -
style format string to be applied to the right argument, atdms the string resulting from this formatting operation

One question remains, of course: how do you convert valustsitmys? Luckily, Python has ways to convert any value
to a string: passittotheepr() orstr() functions. Reverse quotes)(are equivalent toepr() , but they are no
longer used in modern Python code and will likely not be iufatversions of the language.

Thestr() function is meant to return representations of values whiehfairly human-readable, whitepr()

is meant to generate representations which can be read bgtérpreter (or will force eSyntaxError if there

is not equivalent syntax). For objects which don't have dipalar representation for human consumptistm()

will return the same value agpr() . Many values, such as numbers or structures like lists actibdaries, have
the same representation using either function. Stringsflaating point numbers, in particular, have two distinct
representations.

Some examples:

49

>>> s = 'Hello, world.’
>>> str(s)

'Hello, world.’

>>> repr(s)

""Hello, world.™

>>> str(0.1)

0.1’

>>> repr(0.1)
’0.10000000000000001’
>>> x = 10 * 3.25
>>>y = 200 * 200

>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) +

>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashe
... hello = ’hello, world\n’

>>> hellos = repr(hello)

>>> print hellos

‘hello, world\n’

>>> # The argument to repr() may be any Python object:

- repr((x, y, ('spam’, 'eggs’)))

"(32.5, 40000, ('spam’, 'eggs"))"

>>> # reverse quotes are convenient in interactive sessions
.. %, Y, (spam’, 'eggs’)’

"(32.5, 40000, ('spam’, 'eggs"))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
print repr(x).rjust(2), repr(x * X).rjust(3),
Note trailing comma on previous line
print repr(x * X* X).rjust(4)

1 1

4 8

9 27

16 64

25 125

36 216

49 343

64 512

81 729

10 100 1000

>>> for x in range(1,11):
print '%2d %3d %4d’ % (X, X *X, X *X*X)

©CO~NOUAWNPR-

1 1
4 8
9 27
16 64
25 125
36 216
49 343
64 512
81 729
10 100 1000

©CO~NOOUNWNER-

50

Chapter 7. Input and Output

(Note that one space between each column was added by thprimgy works: it always adds spaces between its
arguments.)

This example demonstrates thest() method of string objects, which right-justifies a string ifiedd of a given
width by padding it with spaces on the left. There are simi@thoddjust() andcenter() . These methods
do not write anything, they just return a new string. If thpuhstring is too long, they don't truncate it, but return it
unchanged; this will mess up your column lay-out but thagsally better than the alternative, which would be lying
about a value. (If you really want truncation you can alwayd a slice operation, as int.fjust(n)[:n] ")

There is another methodiill() , which pads a numeric string on the left with zeros. It untderds about plus and
minus signs:

>>> 12" Zfill(5)

‘00012

>>> '-3.14" Zfill(7)

’-003.14'

>>> '3.14159265359".Zfill(5)
'3.14159265359’

Using the%operator looks like this:

>>> jmport math
>>> print 'The value of Pl is approximately %5.3f." % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pdagle as right operand, as in this example:

>>> table = {'Sjoerd: 4127, 'Jack’: 4098, 'Dcab’: 7678}
>>> for name, phone in table.items():
print '%-10s ==> %210d’ % (name, phone)

Jack ==> 4098

Dcab ==> 7678
Sjoerd => 4127

Most formats work exactly as in C and require that you passptioper type; however, if you don't you get an
exception, not a core dump. The&sformat is more relaxed: if the corresponding argument isangiting object, it is
converted to string using thedr() built-in function. Using+ to pass the width or precision in as a separate (integer)
argument is supported. The C form&tsand%pare not supported.

If you have a really long format string that you don’t want faisup, it would be nice if you could reference the
variables to be formatted by name instead of by position.s Thn be done by using forfb(name)format , as
shown here:

>>> table = {'Sjoerd: 4127, 'Jack’: 4098, 'Dcab’: 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dca b)d" % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new lwiit vars() function, which returns a dictionary contain-
ing all local variables.

7.1. Fancier Output Formatting 51

7.2 Reading and Writing Files
open() returns a file object, and is most commonly used with two anum open(filename modg .

>>> f=open('tmp/workfile’, 'w’)
>>> print f
<open file '/tmp/workfile’, mode 'w' at 80a0960>

The first argument is a string containing the filename. Thersgargument is another string containing a few charac-
ters describing the way in which the file will be usedodecan ber’ when the file will only be readw’ for only
writing (an existing file with the same name will be erasedy] @ opens the file for appending; any data written
to the file is automatically added to the erid?’ opens the file for both reading and writing. Tim®deargument is
optional;’r will be assumed if it's omitted.

On Windows and the Macintosth)’ appended to the mode opens the file in binary mode, so themdsarenodes
like'rb’ ,'wb’ ,andr+b’ . Windows makes a distinction between text and binary filesgind-of-line characters
in text files are automatically altered slightly when dateeizd or written. This behind-the-scenes modification to file
data is fine forascii text files, but it'll corrupt binary data like that iIIPEG’ or ‘ EXE’ files. Be very careful to use
binary mode when reading and writing such files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that afiject called has already been created.

To read a file’s contents, cdlread(sizg , which reads some quantity of data and returns it as a stsizgis an
optional numeric argument. Wheizeis omitted or negative, the entire contents of the file wilrbad and returned;
it's your problem if the file is twice as large as your machinglemory. Otherwise, at mosizebytes are read and
returned. If the end of the file has been reacliedad() will return an empty string"().

>>> f.read()
'This is the entire file\n’
>>> f.read()

f.readline() reads a single line from the file; a newline character)(is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in aviiee. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reachabs avblank line is represented by

\n'" , astring containing only a single newline.

>>> f.readline()

'This is the first line of the file.\n’
>>> f.readline()

'Second line of the file\n’

>>> f.readline()

f.readlines() returns a list containing all the lines of data in the file. iifem an optional parametsizehing

it reads that many bytes from the file and enough more to campldine, and returns the lines from that. This is
often used to allow efficient reading of a large file by linag, Without having to load the entire file in memory. Only
complete lines will be returned.

52 Chapter 7. Input and Output

>>> f.readlines()
[This is the first line of the file\n’, 'Second line of the f ile\n’]

An alternate approach to reading lines is to loop over thefiject. This is memory efficient, fast, and leads to simpler
code:

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not providenasdiained control. Since the two approaches manage
line buffering differently, they should not be mixed.

f.write(string) writes the contents ddtring to the file, returnindNone.

>>> f.write('This is a test\n’)

To write something other than a string, it needs to be coaddd a string first:

>>> value = (‘the answer’, 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object’s current posiiiothe file, measured in bytes from the beginning
of the file. To change the file object’s position, ugséek(offset from_whaj’. The position is computed from
addingoffsetto a reference point; the reference point is selected bjrdine_whatargument. Arom_whatvalue of O
measures from the beginning of the file, 1 uses the curremidsiion, and 2 uses the end of the file as the reference
point. from_whatcan be omitted and defaults to 0, using the beginning of thafilthe reference point.

>>> f = open('/tmp/workfile’, 'r+")

>>> f.write('0123456789abcdef’)

>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
1dl

When you're done with a file, caflclose() to close it and free up any system resources taken up by thefibge
After callingf.close() , attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: 1/O operation on closed file

File objects have some additional methods, suctsaisy() andtruncate() which are less frequently used;
consult the Library Reference for a complete guide to filesotsj.

7.2. Reading and Writing Files 53

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numlsdts & bit more effort, since thead() method only
returns strings, which will have to be passed to a functikailt() , which takes a string lik&123" and returns
its numeric value 123. However, when you want to save morept@adata types like lists, dictionaries, or class
instances, things get a lot more complicated.

Rather than have users be constantly writing and debuggidg to save complicated data types, Python provides a
standard module callgaickle . Thisis an amazing module that can take almost any Pyth@tbfgven some forms

of Python code!), and convert it to a string representatibis; process is callegickling. Reconstructing the object
from the string representation is calledpickling Between pickling and unpickling, the string representhgobject
may have been stored in a file or data, or sent over a networieation to some distant machine.

If you have an object, and a file object that's been opened for writing, the simplest way to pickke dbject takes
only one line of code:

pickle.dump(x, f)

To unpickle the object again, ff is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling marngaib or when you don’t want to write the pickled data to
a file; consult the complete documentationppickle in thePython Library Referenck

pickle isthe standard way to make Python objects which can be stmedeused by other programs or by a future
invocation of the same program; the technical term for thisgersistenbbject. Becauspickle is so widely used,
many authors who write Python extensions take care to etlsat@ew data types such as matrices can be properly
pickled and unpickled.

54 Chapter 7. Input and Output

CHAPTER
EIGHT

Errors and Exceptions

Until now error messages haven’t been more than mentiongd you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kindgoffs:syntax errorsandexceptions

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhapadsecommon kind of complaint you get while you are
still learning Python:

>>> while True print 'Hello world’
File "<stdin>", line 1, in ?
while True print 'Hello world’
N

SyntaxError: invalid syntax

The parser repeats the offending line and displays a ligtteov’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least ddtat) the tokemprecedingthe arrow: in the example, the
error is detected at the keywapdint , since a colon ('’) is missing before it. File name and line number are printed
so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically corientay cause an error when an attempt is made to execute it.
Errors detected during execution are cakedeptionsand are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are notlbédihg programs, however, and result in error messages
as shown here:

55

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name ’'spam’ is not defined
>>> 2" + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’'str’ and 'int’ objects

The last line of the error message indicates what happenegpEons come in different types, and the type is printed
as part of the message: the types in the examplZareDivisionError , NameError andTypeError . The
string printed as the exception type is the name of the buiéixception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined excepfadt®ugh it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of di@mepnd what caused it.

The preceding part of the error message shows the contexewhe exception happened, in the form of a stack
traceback. In general it contains a stack traceback ligmgce lines; however, it will not display lines read from
standard input.

ThePython Library Referencists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exmept Look at the following example, which asks the user
for input until a valid integer has been entered, but allohes wser to interrupt the program (usi@pntrol-C

or whatever the operating system supports); note that ages@rated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:
try:
x = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

Thetry statement works as follows.

« First, thetry clause(the statement(s) between ttng andexcept keywords) is executed.
« If no exception occurs, thexcept clausés skipped and execution of they statement is finished.

« If an exception occurs during execution of the try claube, test of the clause is skipped. Then if its type
matches the exception named after éxeept keyword, the except clause is executed, and then execution
continues after thegy statement.

« If an exception occurs which does not match the exceptiomedsin the except clause, it is passed on to outer

56 Chapter 8. Errors and Exceptions

try statements; if no handler is found, it is anhandled exceptioand execution stops with a message as
shown above.

A try statement may have more than one except clause, to speaififeha for different exceptions. At most one
handler will be executed. Handlers only handle exceptibas dccur in the corresponding try clause, not in other
handlers of the samigy statement. An except clause may name multiple exceptioaspasenthesized tuple, for
example:

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), te ssra wildcard. Use this with extreme caution, since it
is easy to mask a real programming error in this way! It can BEsused to print an error message and then re-raise
the exception (allowing a caller to handle the exception e)w

import sys

try:

f = open(’'myfile.txt’)

s = f.readline()

i = int(s.strip())
except IOError, (errno, strerror):

print "l/O error(%s): %s" % (errno, strerror)
except ValueError:

print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise
Thetry ... except statement has an optiorglse clausewhich, when present, must follow all except clauses. It

is useful for code that must be executed if the try clause doeraise an exception. For example:

for arg in sys.argv[l:]:

try:
f = open(arg, 'r’)

except IOError:
print ‘cannot open’, arg

else:
print arg, 'has’, len(f.readlines()), ’lines’
f.close()

The use of theelse clause is better than adding additional code tottlie clause because it avoids accidentally
catching an exception that wasn't raised by the code beiogpied by thery ... except statement.

When an exception occurs, it may have an associated vakgekabwn as the exceptiorssgument The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the excep@one (or tuple). The variable is bound to an excep-
tion instance with the arguments storednstance.args . For convenience, the exception instance defines
getitem__ and__str _ sothe arguments can be accessed or printed directly wittaminig to referenceargs

But use of.args is discouraged. Instead, the preferred use is to pass & simglment to an exception (which can
be a tuple if multiple arguments are needed) and have it btutitkmessage attribute. One my also instantiate an

8.3. Handling Exceptions 57

exception first before raising it and add any attributes &sitlesired.

>>> ry:
raise Exception('spam’, 'eggs’)
. except Exception, inst:

print type(inst) # the exception instance

print inst.args # arguments stored in .args

print inst # _ str__ allows args to printed directly

X, y = inst # _ getitem__ allows args to be unpacked direct ly
print 'x =, x

print 'y =,y

<type ’instance’>
('spam’, ’eggs’)
('spam’, ’'eggs’)
X = spam

y = €ggs

If an exception has an argument, it is printed as the last(jotail’) of the message for unhandled exceptions.

Exception handlers don't just handle exceptions if theyuoémmediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in thedilause. For example:

>>> def this_fails():
x = 1/0

>>> ry:
this_fails()
. except ZeroDivisionError, detail:
print 'Handling run-time error:’, detail

Handling run-time error: integer division or modulo by zero

8.4 Raising Exceptions
Theraise statement allows the programmer to force a specified exarefioccur. For example:

>>> raise NameError, 'HiThere’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The firstargumenttoaise nhames the exception to be raised. The optional second argspecifies the exception’s
argument. Alternatively, the above could be writtemaise NameError('HiThere’) . Either form works fine,
but there seems to be a growing stylistic preference foratterl

If you need to determine whether an exception was raiseddnit ithtend to handle it, a simpler form of thiaise
statement allows you to re-raise the exception:

58 Chapter 8. Errors and Exceptions

>>> try:
raise NameError, 'HiThere’
. except NameError:
print '’An exception flew by’
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a nevptaneclass. Exceptions should typically be derived
from theException class, either directly or indirectly. For example:

>>> class MyError(Exception):
def __init__(self, value):
self.value = value
def __str__ (self):
return repr(self.value)

>>> ry:
raise MyError(2 * 2)
. except MyError, e:
print 'My exception occurred, value:’, e.value

My exception occurred, value: 4
>>> raise MyError, 'oops!
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main___.MyError: 'oops!

In this example, the default init__ of Exception has been overridden. The new behavior simply creates the
valueattribute. This replaces the default behavior of creatireatgsattribute.

Exception classes can be defined which do anything any otags can do, but are usually kept simple, often only
offering a number of attributes that allow information abthe error to be extracted by handlers for the exception.
When creating a module that can raise several distinct€rmarommon practice is to create a base class for exceptions
defined by that module, and subclass that to create speciféptan classes for different error conditions:

8.5. User-defined Exceptions 59

class Error(Exception):
"""Base class for exceptions in this module."™
pass

class InputError(Error):
""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

def __init_ (self, expression, message):
self.expression = expression
self. message = message

class TransitionError(Error):
""Raised when an operation attempts a state transition tha t's not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

def __init_ (self, previous, next, message):
self.previous = previous
self.next = next
self. message = message

Most exceptions are defined with names that end in “Erramjilar to the naming of the standard exceptions.

Many standard modules define their own exceptions to repmitsethat may occur in functions they define. More
information on classes is presented in chapter 9, “Cldsses.

8.6 Defining Clean-up Actions

Thetry statement has another optional clause which is intendeéfinedclean-up actions that must be executed
under all circumstances. For example:

>>> ry:

. raise Keyboardinterrupt

... finally:
print 'Goodbye, world!

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

Keyboardinterrupt

A finally clauseis always executed before leaving e statement, whether an exception has occurred or not. When
an exception has occurred in ttrg clause and has not been handled bygeoept clause (or it has occurred in a

60 Chapter 8. Errors and Exceptions

except orelse clause), itis re-raised after thimally clause has been executed. Timally clause is also
executed “on the way out” when any other clause ofttiie statement is left via dreak , continue or return
statement. A more complicated example:

>>> def divide(x, y):
try:
result = x /'y
except ZeroDivisionError:
print "division by zero!"
else:
print "result is", result
finally:
print "executing finally clause"

>>> divide(2, 1)

result is 2

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str’ and ’st r

As you can see, thignally clause is executed in any event. ThgpeError raised by dividing two strings is not
handled by thexcept clause and therefore re-raised afterfinally clauses has been executed.

In real world applications, th&nally clause is useful for releasing external resources (suchessdii network
connections), regardless of whether the use of the ressassuccessful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertetken the object is no longer needed, regardless of
whether or not the operation using the object succeededled fé& ook at the following example, which tries to open
a file and print its contents to the screen.

for line in open("myfile.txt"):
print line

The problem with this code is that it leaves the file open fandeterminate amount of time after the code has finished
executing. This is not an issue in simple scripts, but can pmblem for larger applications. Theith statement
allows objects like files to be used in a way that ensures theeglaays cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:
print line

After the statement is executed, the filés always closed, even if a problem was encountered whilegsging the

8.7. Predefined Clean-up Actions 61

lines. Other objects which provide predefined clean-upastiill indicate this in their documentation.

62 Chapter 8. Errors and Exceptions

CHAPTER
NINE

Classes

Python’s class mechanism adds classes to the language mithiraum of new syntax and semantics. It is a mixture
of the class mechanisms found irr€and Modula-3. As is true for modules, classes in Python dguaban absolute
barrier between definition and user, but rather rely on tHagness of the user not to “break into the definition.”
The most important features of classes are retained witipéwer, however: the class inheritance mechanism allows
multiple base classes, a derived class can override anyonhedf its base class or classes, and a method can call the
method of a base class with the same name. Objects can cantaibitrary amount of private data.

In C++terminology, all class members (including the data mem@epublic, and all member functions aértual.
There are no special constructors or destructors. As in Ne8uthere are no shorthands for referencing the object’s
members from its methods: the method function is declargk an explicit first argument representing the object,
which is provided implicitly by the call. As in Smalltalk,a$ses themselves are objects, albeit in the wider sense of
the word: in Python, all data types are objects. This pravgkmantics for importing and renaming. Unliké+C

and Modula-3, built-in types can be used as base classegtimston by the user. Also, like in3G but unlike in
Modula-3, most built-in operators with special syntaxtfarietic operators, subscripting etc.) can be redefined for
class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk aboussks, | will make occasional use of Smalltalk anthC
terms. (I would use Modula-3 terms, since its object-ogdrgemantics are closer to those of Python thah, Gut |
expect that few readers have heard of it.)

Objects have individuality, and multiple names (in muktigcopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appetion a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, stritggles). However, aliasing has an (intended!) effect
on the semantics of Python code involving mutable objeath s lists, dictionaries, and most types representing
entities outside the program (files, windows, etc.). Thisdsally used to the benefit of the program, since aliases
behave like pointers in some respects. For example, paasiidject is cheap since only a pointer is passed by the
implementation; and if a function modifies an object passedraargument, the caller will see the change — this
eliminates the need for two different argument passing rmeisims as in Pascal.

9.2 Python Scopes and Name Spaces

Before introducing classes, | first have to tell you someglahout Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scapesmespaces work to fully understand what'’s going
on. Incidentally, knowledge about this subject is usefulfioy advanced Python programmer.

Let's begin with some definitions.

63

A namespacis a mapping from names to objects. Most namespaces aretiyinreplemented as Python dictionaries,
but that's normally not noticeable in any way (except forfpenance), and it may change in the future. Examples of
namespaces are: the set of built-in names (functions suabs} , and built-in exception names); the global names
in a module; and the local names in a function invocation. Be@ase the set of attributes of an object also form a
namespace. The important thing to know about namespadeatithere is absolutely no relation between names in
different namespaces; for instance, two different modolag both define a function “maximize” without confusion
— users of the modules must prefix it with the module name.

By the way, | use the wordttributefor any name following a dot — for example, in the expresgigral ,real is

an attribute of the objeat. Strictly speaking, references to names in modules aiibatrreferences: in the expression
modname.funcname , modnameis a module object anfdincname is an attribute of it. In this case there happens
to be a straightforward mapping between the module’s atgband the global names defined in the module: they
share the same namespate!

Attributes may be read-only or writable. In the latter cassignment to attributes is possible. Module attributes ar
writable: you can writehodname.the_answer = 42 '. Writable attributes may also be deleted with tthel
statement. For examplejel modname.the_answer ' will remove the attributehe _answer from the object
named bymodname

Name spaces are created at different moments and haveedifidfetimes. The namespace containing the built-in
names is created when the Python interpreter starts up,samever deleted. The global namespace for a module
is created when the module definition is read in; normallydoie namespaces also last until the interpreter quits.
The statements executed by the top-level invocation ofritexpreter, either read from a script file or interactively,
are considered part of a module calledmain__ , so they have their own global namespace. (The built-in same
actually also live in a module; this is called builtin__)

The local namespace for a function is created when the fumddi called, and deleted when the function returns or
raises an exception that is not handled within the functi@ctually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocatianh éave their own local namespace.

A scopeis a textual region of a Python program where a namespaceeistigfiaccessible. “Directly accessible” here
means that an unqualified reference to a name attempts tdvénthime in the namespace.

Although scopes are determined statically, they are usedrdically. At any time during execution, there are at least
three nested scopes whose namespaces are directly akeetbgbinnermost scope, which is searched first, contains
the local names; the namespaces of any enclosing functidrish are searched starting with the nearest enclosing
scope; the middle scope, searched next, contains the tuorogetule’s global names; and the outermost scope (searched
last) is the namespace containing built-in names.

If a name is declared global, then all references and assigtsngo directly to the middle scope containing the
module’s global names. Otherwise, all variables foundidatsef the innermost scope are read-only (an attempt to
write to such a variable will simply createn@wlocal variable in the innermost scope, leaving the idelijiceamed
outer variable unchanged).

Usually, the local scope references the local names of &éxtudlly) current function. Outside functions, the local
scope references the same namespace as the global scapedihie’s namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined tdéytuthe global scope of a function defined in a module
is that module’s namespace, no matter from where or by wieg #ie function is called. On the other hand, the
actual search for names is done dynamically, at run time —eliewthe language definition is evolving towards static
name resolution, at “compile” time, so don't rely on dynamame resolution! (In fact, local variables are already
determined statically.)

A special quirk of Python is that assignments always go ineihnermost scope. Assignments do not copy data —
they just bind names to objects. The same is true for deketithe statementel x 'removes the binding af from

1Except for one thing. Module objects have a secret read-atttjpute called _dict__ which returns the dictionary used to implement
the module’s namespace; the namelict _ is an attribute but not a global name. Obviously, using tiogates the abstraction of namespace
implementation, and should be restricted to things like+posrtem debuggers.

64 Chapter 9. Classes

the namespace referenced by the local scope. In fact, alhtipes that introduce new names use the local scope:
in particular, import statements and function definitiomedithe module or function name in the local scope. (The
global statement can be used to indicate that particular varidileées the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new dhijgies, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitionddf statements) must be executed before they have any effext.cold
conceivably place a class definition in a branch offarstatement, or inside a function.)

In practice, the statements inside a class definition wilbllg be function definitions, but other statements arensdld,
and sometimes useful — we’ll come back to this later. Thefionaefinitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventioasmethods — again, this is explained later.

When a class definition is entered, a new namespace is creatbdsed as the local scope — thus, all assignments to
local variables go into this new namespace. In particularction definitions bind the name of the new function here.

When a class definition is left normally (via the endglass objects created. This is basically a wrapper around the
contents of the namespace created by the class definitidhteaen more about class objects in the next section. The
original local scope (the one in effect just before the ctefinition was entered) is reinstated, and the class olgect i
bound here to the class name given in the class definitionené@thssName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribufieremces and instantiation.

Attribute referencesise the standard syntax used for all attribute referencBgtimon: obj.name . Valid attribute
names are all the names that were in the class’s namespanéivenedass object was created. So, if the class definition
looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(self):
return ’hello world’

thenMyClass.i andMyClass.f are valid attribute references, returning an integer andnation object, re-
spectively. Class attributes can also be assigned to, secgowchange the value dlyClass.i by assignment.
__doc__ isalso avalid attribute, returning the docstring belogdimthe class'A simple example class"

9.3. A First Look at Classes 65

Classinstantiationuses function notation. Just pretend that the class olgecparameterless function that returns a
new instance of the class. For example (assuming the abass)cl

x = MyClass()

creates a newstanceof the class and assigns this object to the local variable

The instantiation operation (“calling” a class object)ates an empty object. Many classes like to create objedts wit
instances customized to a specific initial state. Theredar@ass may define a special method nameidit__ () ,
like this:

def __init_ (self):
self.data = []

When a class defines an init__ () method, class instantiation automatically invokesnit__ () for the
newly-created class instance. So in this example, a netiglinéd instance can be obtained by:

x = MyClass()

Of course, the_init__() method may have arguments for greater flexibility. In thaecarguments given to the
class instantiation operator are passed on tait__ () . For example,

>>> class Complex:

def __init__(self, realpart, imagpart):
self.r = realpart
self.i = imagpart
>>> x = Complex(3.0, -4.5)
>>> X[, X
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operatimaerstood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names, datauatits and methods.

data attributescorrespond to “instance variables” in Smalltalk, and totédmembers” in @+. Data attributes need
not be declared; like local variables, they spring into &xise when they are first assigned to. For exampleidfthe
instance oMyClass created above, the following piece of code will print thewsll 6, without leaving a trace:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter

The other kind of instance attribute reference im@thod A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instancesr otiject types can have methods as well. For example,
list objects have methods called append, insert, removg,at so on. However, in the following discussion, we'll
use the term method exclusively to mean methods of clasanostobjects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its d&sdefinition, all attributes of a class that are function

66 Chapter 9. Classes

objects define corresponding methods of its instances. ®arirexamplex.f is a valid method reference, since
MyClass.f s a function, buk.i is not, sinceMyClass.i is not. Butx.f is not the same thing adyClass.f
— it is amethod objectnot a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.f0)

IntheMyClass example, this will return the stringello world’ . However, it is not necessary to call a method
right away:x.f is a method object, and can be stored away and called at ditaterFor example:

xf = x.f
while True:
print xf()

will continue to print hello world ’ until the end of time.

What exactly happens when a method is called? You may haieeddhatx.f() was called without an argument
above, even though the function definition forspecified an argument. What happened to the argument? Surely
Python raises an exception when a function that requiresgament is called without any — even if the argument
isn't actually used...

Actually, you may have guessed the answer: the special #ilogt methods is that the object is passed as the first
argument of the function. In our example, the cafl) is exactly equivalent tdMyClass.f(x) . In general,
calling a method with a list ofi arguments is equivalent to calling the corresponding fonatvith an argument list
that is created by inserting the method’s object before teedrgument.

If you still don’t understand how methods work, a look at thelementation can perhaps clarify matters. When an
instance attribute is referenced that isn’t a data atteilitg class is searched. If the name denotes a valid claksigt
that is a function object, a method object is created by pacfpointers to) the instance object and the function object
just found together in an abstract object: this is the metiyject. When the method object is called with an argument
list, it is unpacked again, a new argument list is constdifétemn the instance object and the original argument list,
and the function object is called with this new argument list

9.4 Random Remarks

Data attributes override method attributes with the sanmeenao avoid accidental name conflicts, which may cause
hard-to-find bugs in large programs, it is wise to use some &frconvention that minimizes the chance of conflicts.

Possible conventions include capitalizing method namesfjxing data attribute names with a small unique string

(perhaps just an underscore), or using verbs for methodaa@unas for data attributes.

Data attributes may be referenced by methods as well as liyaoydusers (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data typ&sct, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the otherdhdhe Python implementation, written in C, can
completely hide implementation details and control acéess object if necessary; this can be used by extensions to
Python written in C.)

Clients should use data attributes with care — clients magsm invariants maintained by the methods by stamping
on their data attributes. Note that clients may add datéatés of their own to an instance object without affecting
the validity of the methods, as long as name conflicts aredaebi— again, a naming convention can save a lot of

9.4. Random Remarks 67

headaches here.

There is no shorthand for referencing data attributes (oerahethods!) from within methods. | find that this actually
increases the readability of methods: there is no chancemflusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is callglf . This is nothing more than a convention: the nasef has
absolutely no special meaning to Python. (Note, howevat i not following the convention your code may be less
readable to other Python programmers, and it is also coslgleithat aclass browseprogram might be written that
relies upon such a convention.)

Any function object that is a class attribute defines a mefoodhstances of that class. It is not necessary that the
function definition is textually enclosed in the class deifim: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class
def fl(self, x, y):
return min(x, x+y)

class C:
f=f1
def g(self):
return ’hello world’
h=g

Now f, g andh are all attributes of clasS that refer to function objects, and consequently they drmathods of
instances o€ — h being exactly equivalent tg. Note that this practice usually only serves to confuse¢aeer of a
program.

Methods may call other methods by using method attributéisecfelf argument:

class Bag:

def __init_ (self):
self.data =]

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as oydimactions. The global scope associated with a
method is the module containing the class definition. (Ths<itself is never used as a global scope!) While one
rarely encounters a good reason for using global data in hadethere are many legitimate uses of the global scope:
for one thing, functions and modules imported into the glabape can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the atkib itself defined in this global scope, and in the next
section we'll find some good reasons why a method would wargfeyence its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the natass” without supporting inheritance. The syntax for
a derived class definition looks like this:

68 Chapter 9. Classes

class DerivedClassName(BaseClassName):
<statement-1>

<statement-N>

The nameBaseClassName must be defined in a scope containing the derived class definitn place of a base
class name, other arbitrary expressions are also allowéis ¢an be useful, for example, when the base class is
defined in another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the samaraslfase class. When the class object is constructed, the
base class is remembered. This is used for resolving atrileferences: if a requested attribute is not found in the
class, the search proceeds to look in the base class. Thissrapplied recursively if the base class itself is derived
from some other class.

There’s nothing special about instantiation of derivedstes:DerivedClassName() creates a new instance of
the class. Method references are resolved as follows: tiresgonding class attribute is searched, descending down
the chain of base classes if necessary, and the methodmeédrevalid if this yields a function object.

Derived classes may override methods of their base claBsesuse methods have no special privileges when calling
other methods of the same object, a method of a base classaltgaanother method defined in the same base class
may end up calling a method of a derived class that overridg¢sor Ct+ programmers: all methods in Python are
effectivelyvirtual .)

An overriding method in a derived class may in fact want toeest rather than simply replace the base
class method of the same name. There is a simple way to calbdlse class method directly: just call
‘BaseClassName.methodname(self, arguments) '. This is occasionally useful to clients as well. (Note
that this only works if the base class is defined or importeeladliy in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance adlwk class definition with multiple base classes looks like
this:

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

<statement-N>

The only rule necessary to explain the semantics is theugsolrule used for class attribute references. This is
depth-first, left-to-right. Thus, if an attribute is not fudiin DerivedClassName , it is searched iBBasel, then
(recursively) in the base classesB#sel, and only if it is not found there, it is searchedBase2, and so on.

(To some people breadth first — searchBase?2 andBase3 before the base classes BAsel — looks more
natural. However, this would require you to know whether aipalar attribute ofBasel is actually defined in
Basel orin one of its base classes before you can figure out the guasees of a name conflict with an attribute of
Base2 . The depth-first rule makes no differences between dirattrarerited attributes dBasel .)

9.5. Inheritance 69

It is clear that indiscriminate use of multiple inheritaig@ maintenance nightmare, given the reliance in Python on
conventions to avoid accidental name conflicts. A well-kngwoblem with multiple inheritance is a class derived
from two classes that happen to have a common base classe Whikasy enough to figure out what happens in this
case (the instance will have a single copy of “instance et or data attributes used by the common base class), it
is not clear that these semantics are in any way useful.

9.6 Private Variables

There is limited support for class-private identifiers. Adgntifier of the form__spam (at least two leading under-
scores, at most one trailing underscore) is textually mmavith_classname___spam , whereclassname is the
current class name with leading underscore(s) strippeid.miangling is done without regard to the syntactic position
of the identifier, so it can be used to define class-privat@an® and class variables, methods, variables stored in
globals, and even variables stored in instances. privatkigaclass on instances other classes. Truncation may
occur when the mangled name would be longer than 255 chesa@atside classes, or when the class name consists
of only underscores, ho mangling occurs.

Name mangling is intended to give classes an easy way to dgiiivate” instance variables and methods, without
having to worry about instance variables defined by derileskes, or mucking with instance variables by code outside
the class. Note that the mangling rules are designed masslydid accidents; it still is possible for a determined soul
to access or modify a variable that is considered privatés @dn even be useful in special circumstances, such as in
the debugger, and that’s one reason why this loophole islog¢d. (Buglet: derivation of a class with the same name
as the base class makes use of private variables of the laasepissible.)

Notice that code passeddsec , eval() orexecfile() does not consider the classname of the invoking class to
be the current class; this is similar to the effect of ghabal statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restrictipfies togetattr() , setattr() anddelattr() , as

well as when referencing dict__ directly.

9.7 0Odds and Ends

Sometimes it is useful to have a data type similar to the Passaord” or C “struct”, bundling together a few named
data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe’
john.dept = 'computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstraet tyge can often be passed a class that emulates the
methods of that data type instead. For instance, if you hduacion that formats some data from a file object, you
can define a class with methoa=sad() andreadline() that get the data from a string buffer instead, and pass it
as an argument.

Instance method objects have attributes, tnaam_self s the instance object with the methodandm.im_func
is the function object corresponding to the method.

70 Chapter 9. Classes

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as weihgUhkis mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statém

raise Class, instance

raise instance

In the first form,instance must be an instance @lass or of a class derived from it. The second form is a
shorthand for:

raise instance.__ class__, instance

A class in an except clause is compatible with an exceptid@nsfthe same class or a base class thereof (but not the
other way around — an except clause listing a derived classtisompatible with a base class). For example, the
following code will print B, C, D in that order:

class B:
pass

class C(B):
pass

class D(C):
pass

for ¢ in [B, C, DI

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (wétkcept B ' first), it would have printed B, B, B — the first
matching except clause is triggered.

When an error message is printed for an unhandled excetiexception’s class name is printed, then a colon and
a space, and finally the instance converted to a string usanguilt-in functionstr()

9.9 lterators

By now you have probably noticed that most container objemtsbe looped over usingfar statement:

9.8. Exceptions Are Classes Too 71

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {fone’1, 'two:2}:
print key

for char in "123"
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. Sheofiiterators pervades and unifies Python. Behind the
scenes, théor statement callger() on the container object. The function returns an iteratgeatihat defines
the methodnext() which accesses elements in the container one at a time. \Wieea are no more elements,

next() raises &toplteration exception which tells théor loop to terminate. This example shows how it all
works:

>>> s = 'abc’

>>> it = iter(s)

>>> t

<iterator object at 0x00A1DB50>
>>> jt.next()

‘a
>>> jt.next()
b

>>> jt.next()
o

>>> jt.next()

Traceback (most recent call last):
File "<stdin>", line 1, in ?
it.next()
Stoplteration

Having seen the mechanics behind the iterator protocd, éaisy to add iterator behavior to your classes. Define
a__iter_ () method which returns an object withnext() method. If the class definemext() , then_ -
iter () can just returrself

72 Chapter 9. Classes

class Reverse:

"lterator for looping over a sequence backwards"

def __init_ (self, data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index ==

raise Stoplteration

self.index = selfindex - 1
return self.data[self.index]

>>> for char in Reverse('spam’):
print char

T O3

9.10 Generators

Generators are a simple and powerful tool for creating ibesa They are written like regular functions but use the
yield statement whenever they want to return data. Each tiext() is called, the generator resumes where it
left-off (it remembers all the data values and which stat@mes last executed). An example shows that generators
can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

>>> for char in reverse('golf’):
print char

Q@ o — T

Anything that can be done with generators can also be dorealdss based iterators as described in the previous
section. What makes generators so compactis that titer () andnext() methods are created automatically.

Another key feature is that the local variables and exenugtate are automatically saved between calls. This made
the function easier to write and much more clear than an agprasing instance variables likelf.index and
self.data

In addition to automatic method creation and saving progstate, when generators terminate, they automatically
raise Stoplteration . In combination, these features make it easy to createtdtsravith no more effort than
writing a regular function.

9.10. Generators 73

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressimg a syntax similar to list comprehensions but with

parentheses instead of brackets. These expressions ayeatkfor situations where the generator is used right away
by an enclosing function. Generator expressions are man@act but less versatile than full generator definitions and
tend to be more memory friendly than equivalent list compredions.

Examples:
>>> sum(i *i for i in range(10)) # sum of squares
285
>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x *y for x,y in zip(xvec, yvec)) # dot product
260
>>> from math import pi, sin
>>> sine_table = dict((x, sin(x *pi/180)) for x in range(0, 91))
>>> unique_words = set(word for line in page for word in line. split())
>>> valedictorian = max((student.gpa, student.name) for s tudent in graduates)

>>> data = ’'golf’
>>> [ist(data[i] for i in range(len(data)-1,-1,-1))
[lfl, llvl 701, lgv]

74 Chapter 9. Classes

CHAPTER
TEN

Brief Tour of the Standard Library

10.1 Operating System Interface
Theos module provides dozens of functions for interacting with tiperating system:

>>> import os

>>> os.system('time 0:02")

0

>>> os.getcwd() # Return the current working directory
'C:\\Python24’

>>> os.chdir(’/server/accesslogs’)

Be sure to use therhport os ' style instead offrom os import *'. This will keepos.open() from shad-
owing the builtinopen() function which operates much differently.

The builtindir() andhelp() functions are useful as interactive aids for working wittygEamodules likes :

>>> import os

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks,ghatil module provides a higher level interface that is easier to
use:

>>> import shutil
>>> shutil.copyfile('data.db’, 'archive.db’)
>>> shutil.move(/build/executables’, 'installdir’)

10.2 File Wildcards

Theglob module provides a function for making file lists from direstavildcard searches:

75

>>> jmport glob
>>> glob.glob(’ *.py’)
[primes.py’, 'random.py’, 'quote.py’]

10.3 Command Line Arguments

Common utility scripts often need to process command limgiments. These arguments are stored insye
module’sargv attribute as a list. For instance the following output restiom running python demo.py one
two three ’atthe command line:

>>> jmport sys
>>> print sys.argv
[demo.py’, 'one’, 'two’, 'three’]

Thegetopt module processesys.argwsing the conventions of theNWx getopt() function. More powerful and
flexible command line processing is provided by tiptparse module.

10.4 Error Output Redirection and Program Termination

Thesys module also has attributes fetdin, stdout andstderr. The latter is useful for emitting warnings and error
messages to make them visible even whiglouthas been redirected:

>>> gys.stderr.write("Warning, log file not found startin g a new one\n’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to usgs exit()

10.5 String Pattern Matching

There module provides regular expression tools for advanceaigpiocessing. For complex matching and manipu-
lation, regular expressions offer succinct, optimizedigohs:

>>> import re

>>> re.findall(r'\bf[a-z] +' 'which foot or hand fell fastest’)
[foot’, ‘fell’, ‘fastest’]

>>> re.sub(r'(\b[a-z]+) \1', r\1’, 'cat in the the hat’)

‘cat in the hat’

When only simple capabilities are needed, string methoelp@aferred because they are easier to read and debug:

>>> ‘tea for too’.replace('too’, 'two’)
‘tea for two’

76 Chapter 10. Brief Tour of the Standard Library

10.6 Mathematics
Themath module gives access to the underlying C library functiomglé@ting point math:

>>> ijmport math

>>> math.cos(math.pi / 4.0)
0.70710678118654757

>>> math.log(1024, 2)

10.0

Therandom module provides tools for making random selections:

>>> import random
>>> random.choice(['apple’, 'pear’, 'banana’)

‘apple’

>>> random.sample(xrange(100), 10) # sampling without rep lacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float

0.17970987693706186

>>> random.randrange(6) # random integer chosen from range (6)

4

10.7 Internet Access

There are a number of modules for accessing the internet e gsing internet protocols. Two of the simplest are

urllib2 for retrieving data from urls ansimtplib for sending mail:

>>> import urllib2

>>> for line in urllib2.urlopen(http://tycho.usno.navy .mil/cgi-bin/timer.pl’):
if 'EST’ in line or 'EDT’ in line: # look for Eastern Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib. SMTP('localhost’)

>>> server.sendmail('soothsayer@example.org’, ’jcaesa r@example.org’,
""" To: jcaesar@example.org

From: soothsayer@example.org

Beware the Ides of March.

>>> server.quit()

10.8 Dates and Times

Thedatetime module supplies classes for manipulating dates and timestinsimple and complex ways. While
date and time arithmetic is supported, the focus of the impl&ation is on efficient member extraction for output

10.6. Mathematics

formatting and manipulation. The module also supportsaibjthat are timezone aware.

dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2003, 12, 2)

>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B)
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.’

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression

Common data archiving and compression formats are direafiported by modules includinglib , gzip , bz2,
zipfile , andtarfile

>>> import zlib

>>> s = 'witch which has which witches wrist watch’
>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress(t)

‘'witch which has which witches wrist watch’
>>> zlib.crc32(s)

226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing thiveefgerformance of different approaches to the same
problem. Python provides a measurement tool that answess tjuestions immediately.

For example, it may be tempting to use the tuple packing apacking feature instead of the traditional approach to
swapping arguments. Thigneit module quickly demonstrates a modest performance adwantag

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2").timeit()
0.57535828626024577

>>> Timer('a,b = b,a’, 'a=1; b=2’).timeit()
0.54962537085770791

In contrast tatimeit s fine level of granularity, therofile ~ andpstats modules provide tools for identifying
time critical sections in larger blocks of code.

78 Chapter 10. Brief Tour of the Standard Library

10.11 Quality Control

One approach for developing high quality software is toewdsts for each function as it is developed and to run those
tests frequently during the development process.

Thedoctest module provides a tool for scanning a module and validagststembedded in a program’s docstrings.
Test construction is as simple as cutting-and-pasting edygall along with its results into the docstring. This
improves the documentation by providing the user with amrg{a and it allows the doctest module to make sure the
code remains true to the documentation:

def average(values):
""" Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded t ests

Theunittest ~ module is not as effortless as thectest module, but it allows a more comprehensive set of tests
to be maintained in a separate file:

import unittest
class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is beshghrough the sophisticated and robust capabilities of it
larger packages. For example:

e Thexmirpclib andSimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the modules names, no direotedge or handling of XML is needed.

» Theemail package is a library for managing email messages, inclublilME and other RFC 2822-based
message documents. Unliketplib andpoplib which actually send and receive messages, the email
package has a complete toolset for building or decoding tempessage structures (including attachments)
and for implementing internet encoding and header prosocol

e Thexml.dom andxml.sax packages provide robust support for parsing this popularidéerchange format.
Likewise, thecsv module supports direct reads and writes in a common datdbasat. Together, these
modules and packages greatly simplify data interchangedsst python applications and other tools.

10.11. Quality Control 79

« Internationalization is supported by a number of moduteduiding gettext , locale , and thecodecs
package.

80

Chapter 10. Brief Tour of the Standard Library

CHAPTER
ELEVEN

Brief Tour of the Standard Library — Part

This second tour covers more advanced modules that suppdespional programming needs. These modules rarely
occur in small scripts.

11.1 Output Formatting

The repr module provides a version aépr() customized for abbreviated displays of large or deeplyatest
containers:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidociou s"))
"set(fa’, 'c’, 'd’, 'e’, f, g, .])"

Thepprint module offers more sophisticated control over printinghbmtilt-in and user defined objects in a way
that is readable by the interpreter. When the result is Iotiggn one line, the “pretty printer” adds line breaks and
indentation to more clearly reveal data structure:

>>> jmport pprint
>>> t = [[[[black’, 'cyan’], 'white’, ['green’, 'red]], [['magenta’,
‘yellow'], 'blue™]]

>>> pprint.pprint(t, width=30)
[[[lblack’, 'cyan],
‘white’,
[green’, 'redq],
[[magenta’, 'yellow’],
‘blue’]]

Thetextwrap module formats paragraphs of text to fit a given screen width:

81

>>> jmport textwrap

>>> doc = ""The wrap() method is just like fill() except that it returns

. a list of strings instead of one big string with newlines t 0 separate
. the wrapped lines."™

>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

Thelocale module accesses a database of culture specific data forifegrouping attribute of locale’s format
function provides a direct way of formatting numbers witbgp separators:

>>> import locale

>>> |ocale.setlocale(locale.LC_ALL, 'English_United St ates.1252')
'English_United States.1252’
>>> conv = locale.localeconv() # get a mapping of convention S

>>> x = 1234567.8

>>> |ocale.format("%d", x, grouping=True)

'1,234,567

>>> |ocale.format("%s%. *f", (conv['currency_symbol’,
conv['frac_digits’], x), grouping=True)
'$1,234,567.80°

11.2 Templating

Thestring module includes a versatileemplate class with a simplified syntax suitable for editing by enénss
This allows users to customize their applications withaihg to alter the application.

The format uses placeholder names formed &ywith valid Python identifiers (alphanumeric charactersl am-
derscores). Surrounding the placeholder with braces alibto be followed by more alphanumeric letters with no
intervening spaces. Writing$’ creates a single escape

>>> from string import Template

>>> t = Template('${village}folk send $$10 to $cause.’)

>>> t.substitute(village="Nottingham’, cause="the ditc h fund’)
‘Nottinghamfolk send $10 to the ditch fund.’

The substitute method raises &eyError when a placeholder is not supplied in a dictionary or a keywor
argument. For mail-merge style applications, user sugmleta may be incomplete and thafe_substitute
method may be more appropriate — it will leave placeholdachanged if data is missing:

82 Chapter 11. Brief Tour of the Standard Library — Part Il

>>> t = Template(Return the $item to $owner.’)
>>> d = dict(item="unladen swallow’)

>>> t.substitute(d)

Traceback (most recent call last):

KeyError: 'owner’
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.’

Template subclasses can specify a custom delimiter. Fangbea a batch renaming utility for a photo browser may
elect to use percent signs for placeholders such as thentdate, image sequence number, or file format:

>>> import time, os.path

>>> photofiles = [img_1074.jpg’, 'img_1076.jpg’, 'img_1 077.jpg’]

>>> class BatchRename(Template):

delimiter = "%’

>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format):)
Enter rename style (%d-date %n-seqnum %f-format): Ashley %n%f

>>> t = BatchRename(fmt)

>>> date = time.strftime('%d%b%y’)

>>> for i, filename in enumerate(photofiles):
base, ext = os.path.splitext(filename)
newname = t.substitute(d=date, n=i, f=ext)
print '%s --> %s’ % (filename, newname)

img_1074.jpg --> Ashley 0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating progragid from the details of multiple output formats. This makes
it possible to substitute custom templates for XML filesjmplaxt reports, and HTML web reports.

11.3 Working with Binary Data Record Layouts

Thestruct module providepack() andunpack() functions for working with variable length binary record
formats. The following example shows how to loop throughdezanformation in a ZIP file (with pack codés!"
and"L" representing two and four byte unsigned numbers respgdtive

11.3. Working with Binary Data Record Layouts 83

import struct

data = open('myfile.zip’, 'rb’).read()

start = 0
for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack(LLLHH’, data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

11.4 Multi-threading

Threading is a technique for decoupling tasks which are egaentially dependent. Threads can be used to improve
the responsiveness of applications that accept user inpilé ather tasks run in the background. A related use case is

running 1/O in parallel with computations in another thread

The following code shows how the high levitireading module can run tasks in background while the main
program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):

def __init__ (self, infile, outfile):
threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, 'w’, zipfile.ZIP_DEFL ATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ’, self.infile

background = AsyncZip('mydata.txt’, 'myarchive.zip’)
background.start()
print 'The main program continues to run in foreground.’

background.join() # Wait for the background task to finish
print 'Main program waited until background was done.’

The principal challenge of multi-threaded applicationsasrdinating threads that share data or other resources. To
that end, the threading module provides a number of syn@ation primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors canltésyroblems that are difficult to reproduce. So, the

preferred approach to task coordination is to concentihBeceaess to a resource in a single thread and then use the
Queue module to feed that thread with requests from other thre@pglications usindQueue objects for inter-thread

84 Chapter 11. Brief Tour of the Standard Library — Part Il

communication and coordination are easier to design, nea@able, and more reliable.

11.5 Logging

Thelogging module offers a full featured and flexible logging system.itdtsimplest, log messages are sent to a
file or tosys.stderr

import logging

logging.debug(’Debugging information’)

logging.info('Informational message’)

logging.warning('Warning:config file %s not found’, 'ser ver.conf’)
logging.error(’Error occurred’)

logging.critical(’Critical error -- shutting down’)

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are ssppd and the output is sent to standard error. Other
output options include routing messages through emaiggitams, sockets, or to an HTTP Server. New filters can
select different routing based on message prioblgBUGINFO, WARNINGERRORandCRITICAL .

The logging system can be configured directly from Pythoreortee loaded from a user editable configuration file for
customized logging without altering the application.

11.6 Weak References

Python does automatic memory management (reference ngudotimost objects and garbage collection to eliminate
cycles). The memory is freed shortly after the last refeedndt has been eliminated.

This approach works fine for most applications but occadiptizere is a need to track objects only as long as they
are being used by something else. Unfortunately, just tingcthem creates a reference that makes them permanent.
Theweakref module provides tools for tracking objects without cregtinreference. When the object is no longer
needed, it is automatically removed from a weakref table amdllback is triggered for weakref objects. Typical
applications include caching objects that are expensicedate:

11.5. Logging 85

>>> import weakref, gc
>>> class A:
def __init__(self, value):
self.value = value
def _ repr__(self):
return str(self.value)

>>> a

= A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d[’primary’] = a # does not create a reference
>>> d['primary’] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary’] # entry was automatically removed

Traceback (most recent call last):
File "<pyshell#108>", line 1, in -toplevel-
d[’primary’] # entry was automatically removed
File "C:/PY24/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()
KeyError: 'primary’

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in ligetyHowever, sometimes there is a need for alternative
implementations with different performance trade-offs.

Thearray module providesaarray() objectthatis like a list that stores only homogenous dadstores it more
compactly. The following example shows an array of numbingd as two byte unsigned binary numbers (typecode
"H") rather than the usual 16 bytes per entry for regular lisfsyttion int objects:

>>> from array import array

>>> a = array('H’, [4000, 10, 700, 22222])
>>> sum(a)

26932

>>> g[1:3]

array(’H’, [10, 700])

Thecollections module provides deque() object that is like a list with faster appends and pops froenl¢fi
side but slower lookups in the middle. These objects are svaled for implementing queues and breadth first tree
searches:

86 Chapter 11. Brief Tour of the Standard Library — Part Il

>>> from collections import deque

>>> d = deque(["taskl", "task2", "task3")
>>> d.append("task4")

>>> print "Handling", d.popleft()

Handling taskl

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node):
if is_goal(m):
return m
unsearched.append(m)

In addition to alternative list implementations, the lityralso offers other tools such as thisect module with
functions for manipulating sorted lists:

>>> jmport bisect

>>> scores = [(100, ’'perl’), (200, 'tcl’), (400, ’'lua’), (50 0, 'python’)]
>>> bisect.insort(scores, (300, 'ruby’))

>>> scores

[(200, ’'perl’), (200, 'tcl’), (300, 'ruby’), (400, ’lua’), (500, 'python’)]

The heapg module provides functions for implementing heaps basedegular lists. The lowest valued entry is
always kept at position zero. This is useful for applicasierhich repeatedly access the smallest element but do not
want to run a full list sort:

>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3,5, 7, 9, 2, 4, 6, 8 0]

>>> heapify(data) # rearrange the list into heap order

>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three small est entries
[-5, 0, 1]

11.8 Decimal Floating Point Arithmetic

The decimal module offers aDecimal datatype for decimal floating point arithmetic. Comparedh® built-

in float implementation of binary floating point, the new class iseesglly helpful for financial applications and
other uses which require exact decimal representatioriralaver precision, control over rounding to meet legal or
regulatory requirements, tracking of significant decimatps, or for applications where the user expects the sesult
to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone chargs different results in decimal floating point and binary
floating point. The difference becomes significant if thautessare rounded to the nearest cent:

11.8. Decimal Floating Point Arithmetic 87

>>> from decimal import *

>>> Decimal('0.70") * Decimal('1.05’)
Decimal("0.7350")

>>> 70 * 1.05

0.73499999999999999

TheDecimal result keeps atrailing zero, automatically inferring fplace significance from multiplicands with two
place significance. Decimal reproduces mathematics as ldphand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities

Exact representation enables thecimal class to perform modulo calculations and equality testsareunsuitable
for binary floating point:

>>> Decimal('1.00") % Decimal(’.10’)
Decimal("0.00")

>>> 1.00 % 0.10
0.09999999999999995

>>> sum([Decimal(’0.1")] *10) == Decimal(’1.0")
True

>>> sum([0.1] =10) == 1.0

False

Thedecimal module provides arithmetic with as much precision as needed

>>> getcontext().prec = 36
>>> Decimal(1l) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

88 Chapter 11. Brief Tour of the Standard Library — Part Il

CHAPTER
TWELVE

What Now?

Reading this tutorial has probably reinforced your inteiesising Python — you should be eager to apply Python to
solving your real-world problems. Where should you go toreaore?

This tutorial is part of Python’s documentation set. Sonteeptiocuments in the set are:

« Python Library Reference

You should browse through this manual, which gives compteugh terse) reference material about types,
functions, and the modules in the standard library. ThedstahPython distribution includedat of additional
code. There are modules to readiid mailboxes, retrieve documents via HTTP, generate randambeus,
parse command-line options, write CGI programs, comprats dnd many other tasks. Skimming through the
Library Reference will give you an idea of what’s available.

* Installing Python Moduleexplains how to install external modules written by otheih®y users.

» Language Referencé detailed explanation of Python’s syntax and semantitsheavy reading, but is useful
as a complete guide to the language itself.

More Python resources:

* http://www.python.org: The major Python Web site. It contains code, documentatiod pointers to Python-
related pages around the Web. This Web site is mirrored ilmwaiplaces around the world, such as Europe,
Japan, and Australia; a mirror may be faster than the mana#pending on your geographical location.

* http://docs.python.org: Fast access to Python’s documentation.

* http://cheeseshop.python.org: The Python Package Index, nicknamed the Cheese Shop, rdar of user-
created Python modules that are available for downloade®aa begin releasing code, you can register it here
so that others can find it.

* http://aspn.activestate.com/ASPN/Python/Cookbook/; The Python Cookbook is a sizable collection of code ex-
amples, larger modules, and useful scripts. Particulartgsle contributions are collected in a book also titled
Python CookbookO'Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you oantp the newsgrougomp.lang.python, or send them to
the mailing list atpython-list@python.org. The newsgroup and mailing list are gatewayed, so messagésdito one

will automatically be forwarded to the other. There are abli20 postings a day (with peaks up to several hundred),
asking (and answering) questions, suggesting new featamdsannouncing new modules. Before posting, be sure to
check the list of Frequently Asked Questions (also called®Q), or look for it in the Misc/’ directory of the Python
source distribution. Mailing list archives are availabiéni@p://mail.python.org/pipermail/. The FAQ answers many of
the questions that come up again and again, and may alreathircthe solution for your problem.

89

90

APPENDIX
A

Interactive Input Editing and History
Substitution

Some versions of the Python interpreter support editindiefdurrent input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. '8 implemented using th @ NU Readlindibrary,
which supports Emacs-style and vi-style editing. Thisdifgrhas its own documentation which | won't duplicate here;
however, the basics are easily explained. The interactiiting and history described here are optionally availatle
the UNIX and Cygwin versions of the interpreter.

This chapter doesotdocument the editing facilities of Mark Hammond’s Pythom\Wackage or the Tk-based envi-
ronment, IDLE, distributed with Python. The command linstbiy recall which operates within DOS boxes on NT
and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the lipteter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs controkaiars. The most important of these aeA (Control-A)
moves the cursor to the beginning of the liGRE to the endC-B moves it one position to the lef§-F to the right.
Backspace erases the character to the left of the cu@sbrthe character to its rightC-K kills (erases) the rest of
the line to the right of the cursog-Y yanks back the last killed strin@-underscore undoes the last change you
made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty indirtes issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottbthie buffer. C-P moves one line up (back) in the
history buffer,C-N moves one down. Any line in the history buffer can be editedasterisk appears in front of the
prompt to mark a line as modified. Pressing Return key passes the current line to the interpre@iR starts an
incremental reverse seardd:S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readtireyican be customized by placing commands in an
initialization file called */.inputrc’. Key bindings have the form

91

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

| prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding foFab in Python is to insert &ab character instead of Readline’s default filename
completion function. If you insist, you can override thisfnytting

Tab: complete

in your “/inputrc’. (Of course, this makes it harder to type indented contiloadines if you're accustomed to using
Tab for that purpose.)

Automatic completion of variable and module names is ogtligravailable. To enable it in the interpreter’s interaeti
mode, add the following to your startup fite:

import rlcompleter, readline
readline.parse_and_bind('tab: complete’)

This binds theTab key to the completion function, so hitting ti@b key twice suggests completions; it looks at
Python statement names, the current local variables, anawdilable module names. For dotted expressions such as
string.a , it will evaluate the expression up to the final ‘and then suggest completions from the attributes of the
resulting object. Note that this may execute applicatiefirgéd code if an object with a getattr__ () method is

part of the expression.

A more capable startup file might look like this example. Nibi@t this deletes the names it creates once they are no
longer needed; this is done since the startup file is exedutihe same namespace as the interactive commands, and
removing the hames avoids creating side effects in thedotise environment. You may find it convenient to keep

1python will execute the contents of a file identified by the PXONSTARTUP environment variable when you start an intévadhterpreter.

92 Appendix A. Interactive Input Editing and History Substitution

some of the imported modules, suchoss which turn out to be needed in most sessions with the ing¢zpr

Add auto-completion and a stored history file of commands t 0 your Python
interactive interpreter. Requires Python 2.0+, readline . Autocomplete is

bound to the Esc key by default (you can change it - see readli ne docs).
#

Store the file in ~/.pystartup, and set an environment vari able to point

to it: "export PYTHONSTARTUP=/max/home/itamar/.pystar tup" in bash.

#

Note that PYTHONSTARTUP does *not * expand "~", so you have to put in the

full path to your home directory.

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, ricompleter, save_history, hist oryPath

A.4 Commentary

This facility is an enormous step forward compared to eavi@sions of the interpreter; however, some wishes are
left: It would be nice if the proper indentation were suggdsbn continuation lines (the parser knows if an indent
token is required next). The completion mechanism mighthsénterpreter’s symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., weoltdaluseful.

A.4. Commentary 93

94

APPENDIX
B

Floating Point Arithmetic: Issues and
Limitations

Floating-point numbers are represented in computer hasdasgbase 2 (binary) fractions. For example, the decimal
fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binactidn
0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identiahles, the only real difference being that the first is
written in base 10 fractional notation, and the second ie [2as

Unfortunately, most decimal fractions cannot be represeekactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter ahg approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Canid fraction 1/3. You can approximate that as a base
10 fraction:

0.3

or, better,
0.33

or, better,

0.333

and so on. No matter how many digits you're willing to writeandq the result will never be exactly 1/3, but will be an
increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you're willuse, the decimal value 0.1 cannot be represented
exactly as a base 2 fraction. In base 2, 1/10 is the infinieghgating fraction

0.0001100110011001100110011001100110011001100110011

95

Stop at any finite number of bits, and you get an approximafitiis is why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you'll see if you entgérad.a Python prompt. You may not, though, because
the number of bits used by the hardware to store floatingtp@ilues can vary across machines, and Python only
prints a decimal approximation to the true decimal valuéheftiinary approximation stored by the machine. On most
machines, if Python were to print the true decimal value eftimary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541 015625

instead! The Python prompt uses the buitiégpr() function to obtain a string version of everything it dispdayor
floats,repr(float) rounds the true decimal value to 17 significant digits, givin

0.10000000000000001

repr(floaf) produces 17 significant digits because it turns out thateugh (on most machines) so that
eval(repr(X)) == xexactly for all finite floats, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-poititis is not a bug in Python, and it is not a bug in your
code either. You'll see the same kind of thing in all langusatigat support your hardware’s floating-point arithmetic
(although some languages may digplaythe difference by default, or in all output modes).

Python’s builtinstr() ~ function produces only 12 significant digits, and you mayhisuse that instead. It's unusual
foreval(str(X)) to reproduce, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It's important to realize that this is, in a real sense, amsithn: the value in the machine is not exactly 1/10, you're
simply rounding thalisplayof the true machine value.

Other surprises follow from this one. For example, afteirgpe

>>> 0.1
0.10000000000000001

you may be tempted to use theund() function to chop it back to the single digit you expect. Budttimakes no
difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value storad'@®1" was already the best possible binary approximation
to 1/10, so trying to round it again can’t make it better: itsvedready as good as it gets.

Another consequence is that since 0.1 is not exactly 1/X0nsng ten values of 0.1 may not yield exactly 1.0, either:

96 Appendix B. Floating Point Arithmetic: Issues and Limitations

>>> sum = 0.0
>>> for i in range(10):
sum += 0.1

S>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises likes. The problem with "0.1" is explained in precise detail
below, in the "Representation Error" section. Sée Perils of Floating Poinfor a more complete account of other
common surprises.

As that says near the end, “there are no easy answers.” datiilf be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-pbardware, and on most machines are on the order of no
more than 1 part in 2**53 per operation. That's more than adégfor most tasks, but you do need to keep in mind
that it's not decimal arithmetic, and that every float operatan suffer a new rounding error.

While pathological cases do exist, for most casual use ofifigaooint arithmetic you'll see the result you expect
in the end if you simply round the display of your final resutishe number of decimal digits you expestr()
usually suffices, and for finer control see the discussionytiidh’s %format operator: thésg %f and %eformat
codes supply flexible and easy ways to round float resultsispta,.

B.1 Representation Error

This section explains the “0.1” example in detail, and shbas you can perform an exact analysis of cases like this
yourself. Basic familiarity with binary floating-point regsentation is assumed.

Representation errorefers to the fact that some (most, actually) decimal fomgticannot be represented exactly as
binary (base 2) fractions. This is the chief reason why Ryitoo Perl, C, G+, Java, Fortran, and many others) often
won't display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binacgyifra Almost all machines today (November 2000) use
IEEE-754 floating point arithmetic, and almost all platf@armap Python floats to IEEE-754 "double precision”. 754
doubles contain 53 bits of precision, so on input the commitves to convert 0.1 to the closest fraction it can of the
form J/2** N whereJ is an integer containing exactly 53 bits. Rewriting

1/10 ~=J3/ @2 =N)

as

J ~=2+~N/10

and recalling thafl has exactly 53 bits (is= 2#+ 52 but< 2** 53), the best value foN is 56:

B.1. Representation Error 97

>>> 2#x 52
4503599627370496L
>>> 2%x 53
9007199254740992L
>>> 2%x 56/10
7205759403792793L

That is, 56 is the only value fd that leaved with exactly 53 bits. The best possible value Jas then that quotient
rounded:

>>> , r = divmod(2 ** 56, 10)
>>> 1
6L

Since the remainder is more than half of 10, the best apprtomis obtained by rounding up:

>>> g+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 75bboprecision is that over 2**56, or

7205759403792794 | 72057594037927936

Note that since we rounded up, this is actually a little bijéa than 1/10; if we had not rounded up, the quotient would
have been a little bit smaller than 1/10. But in no case caaéxactly1/10!

So the computer never “sees” 1/10: what it sees is the exactidn given above, the best 754 double approximation
it can get:

>>> 1 + 2++ 56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truted) value of its 30 most significant decimal digits:

>>> 7205759403792794 x 10%x 30 / 2 ** 56
100000000000000005551115123125L

meaning that the exact number stored in the computer is appately equal to the decimal value
0.100000000000000005551115123125. Rounding that toghifisant digits gives the 0.10000000000000001 that
Python displays (well, will display on any 754-conformingtiorm that does best-possible input and output conver-
sions in its C library — yours may not!).

98 Appendix B. Floating Point Arithmetic: Issues and Limitations

APPENDIX
C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van RossumiditiBy Mathematisch Centrum (CWI, see
http://mww.cwi.nl/) in the Netherlands as a successor of a language called AB@oGemains Python’s principal
author, although it includes many contributions from ogher

In 1995, Guido continued his work on Python at the Corporafir National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versionse$oftware.

In May 2000, Guido and the Python core development team mimvBéOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team movBiital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF,age//www.python.org/psf/) was formed, a
non-profit organization created specifically to own Pytmelated Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&e//www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-cdrtgahe table below summarizes the various releases.

99

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 Cwi yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
201 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.13 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
222 221 2002 PSF yes
223 222 2002-2003 PSF yes
2.3 222 2002-2003 PSF yes
231 2.3 2002-2003 PSF yes
2.3.2 231 2003 PSF yes
233 23.2 2003 PSF yes
234 233 2004 PSF yes
235 234 2005 PSF yes
2.4 2.3 2004 PSF yes
24.1 2.4 2005 PSF yes
24.2 24.1 2005 PSF yes
243 24.2 2006 PSF yes
25 2.4 2006 PSF yes

Note: GPL-compatible doesn't mean that we're distributing Pytlumder the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making yobanges open source. The GPL-compatible licenses
make it possible to combine Python with other software thatieased under the GPL; the others don't.

Thanks to the many outside volunteers who have worked undielo@ direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.5

1. This LICENSE AGREEMENT is between the Python Softwarertéation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise usindgn&y®2.5 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License AgeremPSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyest,tperform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.5 alone anyrdarivative version, provided, however, that PSF’s
License Agreement and PSF's notice of copyright, i.e., ‘@mht © 2001-2006 Python Software Foundation;
All Rights Reserved” are retained in Python 2.5 alone or in@erivative version prepared by Licensee.

. Inthe event Licensee prepares a derivative work thatsedban or incorporates Python 2.5 or any part thereof,

and wants to make the derivative work available to othersragigied herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes maégtiwon 2.5.

. PSF is making Python 2.5 available to Licensee on an “AShi&Sis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OMERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PMON 2.5 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

100

Appendix C. History and License

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PHYIDN 2.5 FOR ANY IN-

CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RERT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.5, OR ANY DERIVAYE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate mgomaterial breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to eraay relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreemestroid grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promotegisaxfiservices of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.5,drisee agrees to be bound by the terms and conditions

of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpeh&ving an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or OrganizatidricgEnsee”) accessing and otherwise using this
software in source or binary form and its associated doctettien (“the Software”).

. Subject to the terms and conditions of this BeOpen Pythogrise Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to iuce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise us&iiftware alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in titev&ee, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee orA&nlS” basis. BEOPEN MAKES NO REPRE-

SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXARLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION ORVARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THATHE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS ORHE SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS 8 A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE HEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate mgomaterial breach of its terms and conditions.

. This License Agreement shall be governed by and intexgriet all respects by the law of the State of Cali-

fornia, excluding conflict of law provisions. Nothing in shiLicense Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture lestwBeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or teadesiin a trademark sense to endorse or promote
products or services of Licensee, or any third party. As aeption, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used adogytb the permissions granted on that web page.

. By copying, installing or otherwise using the softwarigdnsee agrees to be bound by the terms and conditions

of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation foriNaal Research Initiatives, having an office

at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), ahé individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software itsaurbinary form and its associated documentation.

C.2

Terms and conditions for accessing or otherwise using Python 101

2. Subject to the terms and conditions of this License Ager@nCNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyest,tperform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alon@ @niy derivative version, provided, however, that
CNRI's License Agreement and CNRI's notice of copyrighg.,i.“Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” arwireed in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRlicense Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is maakeailable subject to the terms and conditions in
CNRI's License Agreement. This Agreement together witthBigit1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a Hajd1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the falhgWJRL: http://hdl.handle.net/1895.22/1013."

3. Inthe event Licensee prepares a derivative work thatsedban or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to othersragigied herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes maégtioon 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an8Sbasis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY & MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PMON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PIHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS AIRSULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERNIIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate m@omaterial breach of its terms and conditions.

7. This License Agreement shall be governed by the feddelléatual property law of the United States, including
without limitation the federal copyright law, and, to thetemt such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia'®uflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Pythdhllthat incorporate non-separable material that
was previously distributed under the GNU General Publieh&e (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to éssarising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License &gnent shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI amméhsee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a tradesggse to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT"” button where indicated, or lypying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditionssdfittéense Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum £erdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this saféwaand its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notipeapin all copies and that both that copyright notice and
this permission notice appear in supporting documentagind that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining totdmition of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPEGAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FRM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE ORTBIER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE mHIS SOFTWARE.

102 Appendix C. History and License

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licensed acknowledgements for third-party software incorpatate
in the Python distribution.

C.3.1 Mersenne Twister

The_random module includes code based on a download faap//www.math.keio.ac.jp/ matumoto/MT2002/emt19937ar.html.
The following are the verbatim comments from the originaleo

A C-program for MT19937, with initialization improved 2002 11/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(s eed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishi mura,
All rights reserved.

Redistribution and use in source and binary forms, with or wi thout
modification, are permitted provided that the following co nditions
are met:

1. Redistributions of source code must retain the above copy right
notice, this list of conditions and the following disclaime r.

2. Redistributions in binary form must reproduce the above c opyright
notice, this list of conditions and the following disclaime r in the
documentation and/or other materials provided with the dis tribution.

3. The names of its contributors may not be used to endorse or p romote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND TBMNIGBRS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BU NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY ANDITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THEPEYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTR, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOMIIED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USH, 0BR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ONMN ANEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE KB T
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3. Licenses and Acknowledgements for Incorporated Software 103

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo , andgetnameinfo , which are coded in separate source
files from the WIDE Projecthttp://www.wide.ad.jp/about/index.html.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or wi thout

modification, are permitted provided that the following co nditions

are met:

1. Redistributions of source code must retain the above copy right
notice, this list of conditions and the following disclaime r.

2. Redistributions in binary form must reproduce the above c opyright
notice, this list of conditions and the following disclaime r in the
documentation and/or other materials provided with the dis tribution.

3. Neither the name of the project nor the names of its contrib utors
may be used to endorse or promote products derived from this s oftware

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORSS “1S” AND

GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOTIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PKRILAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUS@ME LIABLE

FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPL ARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBBTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERIPTION)

HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHERCONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARBING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSHIBY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

104 Appendix C. History and License

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. |

Permission to use, copy, modify, and distribute this softw are for |
any purpose without fee is hereby granted, provided that th is en- [
tire notice is included in all copies of any software which i s or |

includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Law rence |
Livermore National Laboratory under contract no. W-7405- ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |
This software was prepared as an account of work sponsored b y an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of thei r em- |
ployees, makes any warranty, express or implied, or assume s any |
liability or responsibility for the accuracy, completene ss, or |
usefulness of any information, apparatus, product, or pro cess |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademar k, |
manufacturer, or otherwise, does not necessarily constit ute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The vie ws and |
opinions of authors expressed herein do not necessarily st ate or |
reflect those of the United States Government or the Univer sity |
of California, and shall not be used for advertising or prod uct |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5module contains the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 105

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights re
This software is provided 'as-is’, without any express or im
warranty. In no event will the authors be held liable for any d
arising from the use of this software.

Permission is granted to anyone to use this software for any p
including commercial applications, and to alter it and redi
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; yo
claim that you wrote the original software. If you use this so
in a product, an acknowledgment in the product documentatio
appreciated but is not required.

2. Altered source versions must be plainly marked as such, an
misrepresented as being the original software.

3. This notice may not be removed or altered from any source di

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, w
text is available at

http://www.ietf.org/rfc/rfc1321.txt

The code is derived from the text of the RFC, including the tes
(section A.5) but excluding the rest of Appendix A. It does no
any code or documentation that is identified in the RFC as bei
copyrighted.

The original and principal author of md5.h is L. Peter Deutsc
<ghost@aladdin.com>. Other authors are noted in the change
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; rem

references to Ghostscript; clarified derivation from RFC 1
now handles byte order either statically or dynamically.

1999-11-04 Ipd Edited comments slightly for automatic TOC e
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rathe

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat

andasyncore modules contain the following notice:

served.

plied
amages

urpose,
stribute it

u must not
ftware
n would be

d must not be

stribution.

hose

t suite
t include

ng

h
history

oved
321;

xtraction.
r than mdb5);

106

Appendix C. History and License

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this softwa re and
its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permissi on
notice appear in supporting documentation, and that the nam e of Sam
Rushing not be used in advertising or publicity pertaining t o]
distribution of the software without specific, written pri or
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THISTSMARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND HNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIREOR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESERDIMA@.OSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this softwa re

and its documentation for any purpose and without fee is here by
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permissi on
notice appear in supporting documentation, and that the nam e of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specifi c, written

prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABY

AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DEBIAG
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIO
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

C.3. Licenses and Acknowledgements for Incorporated Software 107

Copyright 1994, by InfoSeek Corporation, all rights reserv
Written by James Roskind

Permission to use, copy, modify, and distribute this Python
and its associated documentation for any purpose (subject t
restriction in the following sentence) without fee is hereb
provided that the above copyright notice appears in all copi
that both that copyright notice and this permission notice a
supporting documentation, and that the name of InfoSeek not
advertising or publicity pertaining to distribution of the

without specific, written prior permission. This permissi
explicitly restricted to the copying and modification of th

to remain in Python, compiled Python, or other languages (su
wherein the modified or derived code is exclusively importe
Python module.

ed.

software
o the
y granted,
es, and
ppear in
be used in
software
on is
e software
ch as C)
d into a

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARDTHIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE ROANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGHESTSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN ANIGYCTOF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING GhHA OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

108

Appendix C. History and License

portions copyright 2001, Autonomous Zones Industries, Inc
err... reserved and offered to the public under the terms of t
Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserve
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all

Permission to use, copy, modify, and distribute this Python
its associated documentation for any purpose without fee is
granted, provided that the above copyright notice appears i
and that both that copyright notice and this permission noti
supporting documentation, and that the name of neither Auto
Bioreason or Mojam Media be used in advertising or publicity
distribution of the software without specific, written pri

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

., all rights...
he

rights reserved.

software and
hereby
n all copies,
ce appear in
matrix,
pertaining to
or permission.

C.3. Licenses and Acknowledgements for Incorporated Software

109

Copyright 1994 by Lance Ellinghouse

Cathedral City, California Republic, United States of Amer ica.

All Rights Reserved
Permission to use, copy, modify, and distribute this softwa re and its
documentation for any purpose and without fee is hereby gran ted,
provided that the above copyright notice appear in all copie s and that
both that copyright notice and this permission notice appea rin
supporting documentation, and that the name of Lance Elling house
not be used in advertising or publicity pertaining to distri bution

of the software without specific, written prior permission

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHARILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIEB

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANMABGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, H#RETN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTIONSIAB OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SRETWA

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversi on
between ascii and binary. This results in a 1000-fold speedu p. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmirpclib ~ module contains the following notice:

110 Appendix C. History and License

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or it S
associated documentation, you agree that you have read, und erstood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this softwa re and
its associated documentation for any purpose and without fe e is
hereby granted, provided that the above copyright notice ap pears in
all copies, and that both that copyright notice and this perm ission
notice appear in supporting documentation, and that the nam e of
Secret Labs AB or the author not be used in advertising or publ icity
pertaining to distribution of the software without specifi c, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WHEBARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERGH-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE MIOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGBER ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA ORT®&ROFI
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIO
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERINCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 111

112

APPENDIX
D

Glossary

»> The typical Python prompt of the interactive shell. Ofteerséor code examples that can be tried right away in
the interpreter.

The typical Python prompt of the interactive shell when antecode for an indented code block.
BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Bythcreator.

byte code The internal representation of a Python program in the iméter. The byte code is also cachedpgc
and.pyo files so that executing the same file is faster the second tieeerfipilation from source to byte code
can be avoided). This “intermediate language” is said toamima “virtual machine” that calls the subroutines
corresponding to each bytecode.

classic classAny class which does not inherit froobject . Seenew-style class

coercion The implicit conversion of an instance of one type to anothaing an operation which involves two argu-
ments of the same type. For exampie(3.15) converts the floating point number to the inte§ebut in
3+4.5 , each argumentis of a different type (one int, one float) kot must be converted to the same type be-
fore they can be added or it will raiséfgpeError . Coercion between two operands can be performed with the

coerce builtin function; thus3+4.5 is equivalent to callingperator.add(* coerce(3, 4.5)) and
results inoperator.add(3.0, 4.5) . Without coercion, all arguments of even compatible typesita/
have to be normalized to the same value by the programmerflead(3)+4.5 rather than jus8+4.5 .

complex number An extension of the familiar real number system in which alinbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers aremaliples of the imaginary unit (the square root
of -1), often writteni in mathematics oy in engineering. Python has builtin support for complex nersb
which are written with this latter notation; the imaginargrpis written with aj suffix, e.g.,3+1j . To get
access to complex equivalents of tnath module, use&math . Use of complex numbers is a fairly advanced
mathematical feature. If you're not aware of a need for thésalmost certain you can safely ignore them.

descriptor Any new-styleobject that defines the methodsget () , set () ,or__delete_ () .Whena
class attribute is a descriptor, its special binding betvagitriggered upon attribute lookup. Normally, writing
a.blooks up the objech in the class dictionary foa, but if b is a descriptor, the defined method gets called.
Understanding descriptors is a key to a deep understandiRytbon because they are the basis for many
features including functions, methods, properties, alasthods, static methods, and reference to super classes.

dictionary An associative array, where arbitrary keys are mapped tegalThe use adict much resembles that
for list , but the keys can be any object with ahash__ () function, not just integers starting from zero.
Called a hash in Perl.

duck-typing Pythonic programming style that determines an object’s tiyp inspection of its method or attribute
signature rather than by explicit relationship to some tgpgect ("If it looks like a duck and quacks like a
duck, it must be a duck.") By emphasizing interfaces rathan specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-pyng avoids tests usingpe() orisinstance()
Instead, it typically employkasattr() tests olEAFPprogramming.

113

EAFP Easier to ask for forgiveness than permission. This commyhdd coding style assumes the existence of
valid keys or attributes and catches exceptions if the apgamproves false. This clean and fast style is
characterized by the presence of maryy andexcept statements. The technique contrasts withltB&L
style that is common in many other languages such as C.

_ future__ A pseudo module which programmers can use to enable newdgedaatures which are not compatible
with the current interpreter. For example, the expres$ibd currently evaluates t@. If the module in which
it is executed had enablédie divisionby executing:

from __ future__ import division

the expressioil/4 would evaluate t@®.75 . By importing the__future_ module and evaluating its
variables, you can see when a new feature was first added tartpgage and when it will become the default:

>>> jmport __ future__
>>> _ future__.division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, 'alpha’, 0), 8192)

generator A function that returns an iterator. It looks like a normahétion except that values are returned to the
caller using vield statement instead ofraturn statement. Generator functions often contain one or more
for orwhile loops thatyield elements back to the caller. The function execution is stdmi theyield
keyword (returning the result) and is resumed there whenéteelement is requested by calling thext()
method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a nbexrpression followed by &or
expression defining a loop variable, range, and an optibnaxpression. The combined expression generates
values for an enclosing function:

>>> sum(i i for i in range(10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one tluaadie run at a time. This
simplifies Python by assuring that no two processes can sitltesame memory at the same time. Locking the
entire interpreter makes it easier for the interpreter tonboidti-threaded, at the expense of some parallelism on
multi-processor machines. Efforts have been made in thed@areate a “free-threaded” interpreter (one which
locks shared data at a much finer granularity), but perfoomanffered in the common single-processor case.

IDLE An Integrated Development Environment for Python. IDLE isasic editor and interpreter environment that
ships with the standard distribution of Python. Good foribegrs, it also serves as clear example code for those
wanting to implement a moderately sophisticated, mubitipkm GUI application.

immutable An object with fixed value. Immutable objects are numbersgs or tuples (and more). Such an object
cannot be altered. A new object has to be created if a diffata@ne has to be stored. They play an important
role in places where a constant hash value is needed, forea® a key in a dictionary.

integer division Mathematical division discarding any remainder. For exi@yihe expressiohl/4 currently eval-
uates ta2 in contrast to the2.75 returned by float division. Also callefibor division When dividing two
integers the outcome will always be another integer (hathiedloor function applied to it). However, if one of
the operands is another numeric type (suchfeat), the result will be coerced (seeercior) to a common
type. For example, an integer divided by a float will resultifioat value, possibly with a decimal fraction.
Integer division can be forced by using thie operator instead of thie operator. See also future .

114 Appendix D. Glossary

interactive Python has an interactive interpreter which means that poury out things and immediately see their
results. Just laungbython with no arguments (possibly by selecting it from your congpistmain menu). It
is a very powerful way to test out new ideas or inspect modaekspackages (remembezlp(x)).

interpreted Python is an interpreted language, as opposed to a compikedidis means that the source files can be
run directly without first creating an executable which isrthiun. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though thegrams generally also run more slowly. See also
interactive

iterable A container object capable of returning its members oneiate tExamples of iterables include all sequence
types (such abst , str , andtuple) and some non-sequence types liket andfile and objects of any
classes you define with an iter__ () or__getitem__ () method. Iterables can be used ifoa loop
and in many other places where a sequence is need®)l (, map() , ...). When an iterable object is passed
as an argument to the builtin functider() , it returns an iterator for the object. This iterator is gdodone
pass over the set of values. When using iterables, it is lysuail necessary to catler() or deal with iterator
objects yourself. Théor statement does that automatically for you, creating a teargannamed variable to
hold the iterator for the duration of the loop. See atecator, sequenceandgenerator

iterator An object representing a stream of data. Repeated calletibefator'snext() method return successive
items in the stream. When no more data is availabfkaplteration exception is raised instead. At this
point, the iterator object is exhausted and any furthesdalitsnext() method just rais&toplteration
again. lterators are required to have ariter__ () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places vatieee iterables are accepted. One notable exception
is code that attempts multiple iteration passes. A contaibgct (such aslist) produces a fresh new iterator
each time you passitto thter() function or useitin dor loop. Attempting this with an iterator will just
return the same exhausted iterator object used in the p®iteration pass, making it appear like an empty
container.

LBYL Look before you leap. This coding style explicitly tests fwe-conditions before making calls or lookups.
This style contrasts with thEAFP approach and is characterized by the presence of iharsfatements.

list comprehension A compact way to process all or a subset of elements in a sequerd return a list with the
results. result = ["0x%02x" %x for x in range(256) if x %2 == 0] generates a list of
strings containing hex numbers (0x..) that are even anceimghge from 0 to 255. Thié clause is optional. If
omitted, all elements ilange(256) are processed.

mapping A container object (such agdict) that supports arbitrary key lookups using the special ogbth -
getitem__ ()

metaclass The class of a class. Class definitions create a class nanfessadictionary, and a list of base classes.
The metaclass is responsible for taking those three argisnaerd creating the class. Most object oriented
programming languages provide a default implementatiohathakes Python special is that it is possible to
create custom metaclasses. Most users never need thisubwthen the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for laggitribute access, adding thread-safety, tracking
object creation, implementing singletons, and many othekd.

mutable Mutable objects can change their value but keep td€ir . See alsoammutable

namespaceThe place where a variable is stored. Namespaces are implednas dictionaries. There are the local,
global and builtin namespaces as well as nested namespeaaggcts (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, thections__builtin__.open() andos.open()
are distinguished by their namespaces. Namespaces alssadability and maintainability by making it clear
which module implements a function. For instance, writtagdom.seed() or itertools.izip()
makes it clear that those functions are implemented byahdom anditertools modules respectively.

nested scopeThe ability to refer to a variable in an enclosing definitioRor instance, a function defined inside
another function can refer to variables in the outer fumctiblote that nested scopes work only for reference
and not for assignment which will always write to the innestngcope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variabéad and write to the global namespace.

115

new-style classAny class that inherits frombject . This includes all built-in types likéist anddict . Only
new-style classes can use Python’s newer, versatile f=atike slots , descriptors, properties, -
getattribute_ () , class methods, and static methods.

Python3000 A mythical python release, not required to be backward cdibiga with telepathic interface.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instanceutits and
eliminating instance dictionaries. Though popular, thehtgque is somewhat tricky to get right and is best
reserved for rare cases where there are large numbersaficestin a memory-critical application.

sequenceAn iterable which supports efficient element access using integer @sdita the _getitem__ () and
__len__ () special methods. Some built-in sequence typesstre , str ,tuple , andunicode . Note that
dict also supports getitem__ () and__len_ () ,butis considered a mapping rather than a sequence
because the lookups use arbitranmutablekeys rather than integers.

Zen of Python Listing of Python design principles and philosophies thatteelpful in understanding and using the
language. The listing can be found by typirimmport this " at the interactive prompt.

116 Appendix D. Glossary

Symbols

.y 113

»> 113

all 47

__builtin__ (built-in module), 45
_ future_ ,114
__slots,116

A

append() (list method), 29
B

BDFL, 113

byte code, 113

C

classic class, 113

coercion, 113

compileall (standard module), 43
complex number, 113

count() (list method), 29

D

descriptor, 113

dictionary, 113

docstrings, 22, 27
documentation strings, 22, 27
duck-typing, 113

E

EAFP, 113

environment variables
PATH, 5, 43
PYTHONPATH, 43, 44
PYTHONSTARTUP, 6, 92

extend() (list method), 29

F
file

object, 52
for

INDEX

statement, 19

G

generator, 114

generator expression, 114
GIL, 114

global interpreter lock, 114

H
help() (built-in function), 75

IDLE, 114

immutable, 114

index() (list method), 29
insert() (list method), 29
integer division, 114
interactive, 114

interpreted, 115

iterable, 115

iterator, 115

L

LBYL, 115
list comprehension, 115

M

mapping, 115
metaclass, 115
method

object, 67
module

search path, 43
mutable, 115

N

namespace, 115
nested scope, 115
new-style class, 115

O

object

117

file, 52
method, 67
open() (built-in function), 52

P

PATH, 5, 43
path

module search, 43
pickle (standard module), 54
pop() (list method), 29
Python3000, 116
PYTHONPATH, 43, 44
PYTHONSTARTUP, 6, 92

R

readline (built-in module), 92
remove() (list method), 29

reverse() (list method), 29
ricompleter (standard module), 92

S

search

path, module, 43
sequence, 116
sort() (list method), 29
statement

for , 19
string (standard module), 49
strings, documentation, 22, 27
sys (standard module), 44

U

unicode() (built-in function), 14

Z
Zen of Python, 116

118

Index

