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New Formulas and Concepts

We are now introduced to the second part of electomagnetics. Magnetic fields,
while in many ways similar to electric fields, are quite different in many impor-
tant ways. Electric fields are produced by and act on charges, whereas magnetic
fields are produced by and act on moving charges only.

Units and Constants

We have a new constant, µ0, the so-called permeability of free space. It functions
as a coupling constant in the strength of magnetic interactions (just like ε0 for
electrostatic and G for gravitational). It’s value is conveniently expressed as

µ0 = 4π × 10−7T ·m/A.

We also have one new unit, the tesla T , where

[T ] = 1N ·A/m.

Cross Product Rules

Remember the alphabetical order i j k i j and that you get a + going right and
− going left. So i× j = k (going right), but j × i = −k (going left).

−→ +
ijkij.
− ←−

Right Hand Rule

The right-hand-rule gives you the correct direction when figuring out a cross-
product. If you have a formula like ~A × ~B = ~C, then pointing your first two
fingers the in the directions of the first two vectors, your third finger will point
in the direction of the third vector (answer). But you must do it in order! So
~A → thumb, ~B → index finger, so the result ~C → middle finger. Just make
sure you use your right hand!
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Force on a moving point charge

~F = q~v × ~B.

Force on a current carrying wire

d~F = Id~L× ~B.

Note that if ~B is constant then this expression can be integrated immediately to
get ~F = I~L× ~B, which is the form in which we will usually use it. ~L has length
equal to the physics length of the wire and points in the current direction.

Note that for a closed circuit in a constant a field we have

~F =

∫ f

i

Id~L× ~B

= I

(

∫ f

i

d~L

)

×
~B

= I
(

~Lf −
~Li

)

×
~B

= 0,

where the last line follows since a closed loop ends up where it starts.

Work

Also, note that the work done by the magnetic force is given by

W =

∫

~F · d~r

=

∫

(

q~v × ~B
)

· ~vdt

= 0,

because the cross product of two vectors is always perpendicular to the two you
started with. In particular, ~v × ~B is perpendicular to ~v, so their dot product
must give zero. This result is fully general as we made no assumptions regarding
v or B. Thus, the magnetic field never does any work. Though it may change
the direction of velocity, it never changes the magnitude. In particular, for
constant B problems, we will only have combinations of straight and circular
motion (for example, the helix problems Venkat loves so much. . . )

Solutions

28-83

This is a very good, but rather difficult problem. We want to solve for the
velocity as a function of time, so we’re looking to solve the equation of motion.
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But, before we do it analytically, lets think about the solution. We know the
magnetic field does not act on a component of velocity parallel to it (remember
the cross product?). So, the x-component here will remain unchanged. Now,
the y-component is now perpendicular to B. But, the magnetic field can only
change its direction.

Now the right hand rule says that force is upward. So the y-component
begins to rotate upward. But, as it rotates, the force changes so as always to
be perpendicular to the velocity direction. In other words, this is a problem of
centripetal acceleration! The direction of the perpendicular component will go
around in a circle, but with always the same magnitude.

Now, put the two together. The parallel component of velocity remains
unaltered, while the perpendicular component goes around in a circle - the path
should be that of a helix, or spring. In fact, if we continue our analysis along
these lines we can get the precise mathematical form of the answer. Try it and
see if you get what is derived below through some labor.

Now, lets look at this analytically. We want to solve the equations of motion,
so we have Newton’s equation ~F = m~a, with the magnetic force on the left-hand-
side. Thus we have

~F = m~a = m
d~v(t)

dt
= q~v(t)× ~B,

where the complication arises because v is on both sides - we have a differential
equation.

But, we can expand out v in terms of it’s components and take the cross
product with B as follows:

~v × ~B = (vx î + vy ĵ + vz k̂)× (Bî)

= −Bvyk̂ + Bvz ĵ,

which follows using the rules above (note that the t’s have been dropped for
ease of notation). Now using this expression, Newton’s equation becomes

d~v

dt
=

qB

m
(vz ĵ − vyk̂).

This is a vector equation, which stands for 3 separate equations when written
out in components:

dvx

dt
= 0

dvy

dt
= ωvz

dvz

dt
= ωvy,

where we have set ω ≡ qB/m for convenience. The first equation is easy - no
acceleration in x. The x-velocity never changes so vx = vx0 for all time.
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The second two equations, however, are rather nasty - coupled differential
equations. They are coupled because the change in one depends on the current
value of the other. However, it is actually not too difficult to work this out.
Treat it like any other system of equations with two unknowns - try to eliminate
variables and then solve for the unknowns. For instance, the second equation
gives

vy =
−1

ω

dvz

dt
.

We can then substitute this expression into the third equation to obtain

d2vy

dt2
= −ω2vy.

If we do the same procedure with vz we get the same thing but with y replaced
by z

d2vz

dt2
= −ω2vz .

Voila! The equations have been decoupled. Now, we need to solve these two
(identicle) equations - we need functions that, after differentiated twice, give
the the same thing back but with a minus sign. A little though or intuition will
yield sin(ωt) and cos(ωt) (you can check these by differentiation).

Now, which do we use? Or do we use both? Here is where the initial
conditions come in. Our initial conditions are

vy(0) = vy0

vz(0) = 0

dvy

dt
(0) = ωvz = 0

dvz

dt
(0) = −ωvy = −ωvyo.

Thus, the equation for vy should start at its maximum value (first and third
equations) and should just be given by cos. Likewise, for vz we start at zero,
but have maximal, negative, derivative, which means − sin. Thus

vy(t) = vy0 cos(ωt)

vz(t) = −vy0 sin(ωt)

You can verify by substitution that these satisfy the coupled differential equa-
tions and our initial conditions exactly. Our full solution is therefore

~v(t) = vx0î + vy0(cos(ωt)ĵ − sin(ωt)k̂)

which describes a helical path as advertised (and ω ≡ qB/m is the cyclotron
frequency). Finally, given ~v(t) above, can you find ~r(t)?
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