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Formulas and Concepts

Now we expand our discussion of circuits by including the capacitor into the
mix. To write down our circuit equations we need to know how to handle a
capacitor. A capacitor has a voltage across its plates equal to VC = Q/C. Now
we need to know which sign to use. If the current flows into a plate, that plate
should accumulate positive charge, and so should have the higher potential.
Thus we have

−Q/C If you go through a capacitor in the direction of the current you go down

in potential by Q/C.

+Q/C If you go through a capacitor opposite the current you go up in potential
by Q/C.
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Figure 1: Voltage rules for capacitors in a circuit.

This next key idea has to do with the short (t = 0) and long (t → ∞) time
behavior of a capacitor in a circuit.

1. An uncharged capacitor acts like a short circuit since V = Q/C = 0

2. A fully charged capacitor acts like an open circuit since I = dQ/dt = 0.

Thus the short and long time problems reduce to the ones earlier involving only
batteries and resisters since the capacitor no longer explicitly appears. We will
typically utilize these statements by first writing down the general loop and
junction equations, but then simplifying them with Q or I set to 0.
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Next, we note the solutions to the differential equations for simple RC cir-
cuits. For charging we have the loop equation

E −

Q

C
− R

dQ

dt
= 0,

where we have set I = dQ/dt, which has solution

Q(t) = CE

(

1 − e−t/RC
)

,

where Qmax = CE is the maximum charge on the capacitor (at t → ∞) and
τ = RC is the time constant, whose value determines how long the capacitor
takes to charge.

For discharging we have the loop equation

−

Q

C
− R

dQ

dt
= 0

where we have set I = −dQ/dt, which has solution

Q(t) = Q0e
−t/RC

where Q0 is the initial charge value. Note that the current is found in both cases
by differentiation. Know also what the graphs of these exponential functions
look like. This is important!
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Figure 2: Graphs of the exponential functions in dimensionless quantities.

Finally, if it is needed, when you have a complicated RC circuit (one with
many resisters), we can still solve the equations by writing down the Q(t) equa-
tion, but making making the following replacements: E becomes the maximum
total EMF seen by the capacitor (ie, the voltage drop across the branch with
the capacitor when the current there is zero); and R becomes the total resis-
tance in series with the capacitor (ie, mentally remove all EMFs and reduce the
resulting resister network to just one in series with C). We will justify this with
an example:

HRW 27-53

I will start with the junction and two loop (left and right) equations:

I1 − I2 − I3 = 0
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E − R1I1 − R2I2 = 0

−R3I3 −

Q

C
+ R2I2 = 0.

Note that I3 is the current through the capacitor, so

I3 =
dQ

dt
.

Thus, we want to end up with a equation involving only Q and I3. Thus we
solve the first equation for I1 and substitute into the second equation to get

E − R1(I2 + I3) − R2I2 = 0,

which we then solve for I2 to get

I2 =
E − R1I3

R1 + R2

.

Now we substitute this into the third equation to remove I2, which, after col-
lecting terms, becomes

−

(

R3 +
R1R2

R1 + R2

)

I3 −

Q

C
+

R2E

R1 + R2

= 0.

At first glance this looks entirely intractable, but notice that everything
besides I3 and Q is a constant! So, let’s turn them into the more simplistic (and
suggestive) constants:

(

R3 +
R1R2

R1 + R2

)

→ R′

R2E

R1 + R2

→ E
′,

which yields the equation

−R′
dQ

dt
−

Q

C
+ E

′ = 0,

which should look very familiar. Since this is exactly the usual RC loop equation,
we immediately obtain the solution

Q(t) = CE
′

(

1 − e−t/R′C
)

,

in terms of our primed quantities. Thus the capacitor sees an effective EMF
given by E

′, and this arrangement is known as a voltage divider (something
you’ll see a lot of in a circuits class. . . ); and the capacitor sees an effective resis-
tance given by R′, which is written as R3 in parallel with the series combination
R1 and R2, which is the equivalent resistance if we remove the EMF ! Thus, this
is the justification for the statements made earlier.
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Finally, let us find the voltage V2. This quantity is the same as the voltage
through the parallel branch that includes the capacitor, thus we have

V2 = V3 + VC

= I3R3 +
Q

C
,

and we have

I3 =
dQ

dt
=

E
′

R′
e−t/R′C ,

so putting things together we obtain

V2(t) =
R3

R′
E

′

(

e−t/R′C
)

+ E
′

(

1 − e−t/R′C
)

= E
′

[

1 −

(

1−

R3

R′

)

e−t/R′C

]

,

Note that R3 < R′ so the term in the parenthesis is positive, and the function
increaes in time as we know it must. Now, if we substitute in our values we
have E

′ = 1

2
E = 600V and R/R′ = 2/3, and thus

V2(t) = (600V)

(

1 −

1

3
e−t/τ

)

,

which yields the limiting values

t V2(t)
0 400V
∞ 600V

Moreover, the functional form of V2(t) has exponential dependence, just as we
assumed.
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