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New Formulas and Concepts

We begin our discussion of Electromagnetism by considering electric fields. Elec-
tric fields behave a lot like gravitational fields. Every particle has mass. This
mass creates a gravitational ’field’ which pulls other things with mass toward
it. The more mass, the greater the field, and the stronger the pull. Finally, the
the further away you get from a mass, the weaker the field.

In addition to possessing mass, most matter also possesses something called
charge. Charge works almost the same as mass - it creates a field, called the
electric field. This field exerts a force on other things that have charge, and
the further away the weaker the effect. The major difference is that, while all
mass attracts all other mass, charge comes in two flavors - called positive and
negative. The rule is that likes repel and opposites attract.

It actually turns out that the electric force is much, much stronger than
gravitation (see problem 65). But, because of these two flavors, opposites tend
to attract each other, leading to an object that, overall, has no net charge. Most
things tend to end up neutralized, so we don’t tend to notice this force as much
as gravity, since nothing can diminish it (we think).

Now, charge is measured in units called coulombs [C]. Charge, like mass,
is a conserved quantity - it is neither created nor destroyed. Finally, the basic
equation of force between two charges is Coulomb’s Law

F = k
|q1q2|

r2
,

where q1 and q2 are the two charges, r is the distance between them, and k is
a constant, with value 9× 109 in MKS units (can you figure out the units from
Coulomb’s Law?). This formula gives the force magnitude. The direction is
given by the above likes/opposites rule.

Finally, this constant is often given in the form

k =
1

4πε0

where ε0 is called the permittivity of free space (something which means nothing
to you now, but will make more sense later) and has the value 8.85×10−12 (again,
you give the units).
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Problems

HRW 21-13

In this problem we are given two charges (q1, q2) placed on the x-axis and
are asked to place a third charge, q3 in a place where it will experience no force.
If q3 is placed anywhere off the x-axis the two forces on it due to the other
charges will be in different directions and therefore have no hope of canceling
(See Fig. 1). Thus, q3 must be placed on the axis.
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Figure 1: Forces on q3 are not collinear when off axis.

Now, q3 must be placed on the axis, but there are now 3 possible regions to
consider. These regions (I, II, and III) are separated by q1 and q2. Assume that
q3 is positively charged. If it is placed in region II, then both forces on it would
be to the right. Thus, they can never cancel in this region.

This leaves I and II. Now, in both regions, the forces will be in different
directions, so we have the possibility of cancellation. Now, if were’ in III, we’re
always closer to q2, which is the larger charge. Since the electric force is pro-
portional to charge and inversely proportional to separation squared (see the
equation above), the force due to q2 will always dominate in III, so there will
be no place where the net force goes to zero.

This leaves only region I. In this region we’re always closest to q1, which
is the weaker of the two charges. Thus we may expect a cancellation in this
region. If we place the third charge a distance x from the axis, then the total
force on it from the two charges will be

F = F31 + F32

= k
q1q2

x2
+ k

q2q3

(x + L)2
= 0.
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Thus we can cancel k and q2 to get

q1

x2
+

q3

(x + L)2
= 0.

Cross-multiplying and collecting terms in x gives the quadratic equation

x2(q1 + q3) + x(2Lq1) + q1L
2 = 0

and the (complicated looking) solutions are

x = L

(

−q1 ±
√

q2

1
− q1(q1 + q2)

q1 + q2

)

.

What is interesting about this solution is that it depends linearly on L. This
means that as long as |q2| > |q1| we will have a solution somewhere in region I
for any given value of L. This was not obvious from the setup of the problem,
but is nevertheless true. It can also be seen from the following graph of the
magnitudes of the forces from charges 1 and 2 (Fig. 2). In region I the two
curves intersect, and this point is where the net force goes to zero. Convince
yourself that by sliding q2 around, as long as it stays to the left of q1, the two
graphs will always intersect somewhere in I. (How does this solution depend on
q1? On q3?)
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Figure 2: Force magnitudes due to q1 and q2 and their cancellation in I.

Now that you’ve seen this solution in detail, you should be able to check
what happens in the following cases:

1. |q1| = |q2|.

2. q1 negative and q2 positive.
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3. q1 and q2 with the same sign.

Finally, here is a graph of the net force in each region along the x-axis (Fig.
3). If the force is positive then it is toward the right, and if it is negative it is to
the left (indicated by the arrows). The forces does cross the axis at x = .137,
but it’s invisible because of the scale of the plot.
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Figure 3: Net force on q3 as a function of x.
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