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Introduction

First, let us recall what’s going on here. SR is about how different inertial
observers are related, that is, observers moving at constant speed with respect
to each other. We will always take one frame to be ’at rest’ and the other
frames to be ’moving’ in our calculations. This is extremely important because
the answers to questions like ’where or when did x happen’ depend on the state
of motion of the observer.

Remember, even though we’re looking at multiple reference frames drawn
on the sheet of paper, we have to imagine ourselves being only one of them at
any one time - usually the one at rest with respect to us (ie, our own reference
frame). The most complications arise in SR when we try to imagine ourselves in
two different frames at once and hitting contradictions. As long as we remember
we can only be in one frame at a time, we’ll do fine (nothing can be moving
and not moving at the same time. If we attempt to imagine ourselves in this
absurdity, no wonder we find other absurdities waiting for us).

Space-Time Diagrams

We will begin with a basic introduction to space-time diagrams, which are very
useful constructions in relativity theory. Nothing keeps your thinking clearer
and cleaner than a good diagram, and that is especially true in SR when things
are much more complicated to begin with.

We’ll build up our diagrams by first making an analogy. Consider two di-
mensional space. We can draw axis in the plane in different ways: say x and y
(S frame) or x′ and y′ (S′ frame) (see fig.1).

These two axis are related by a rotation by an angle θ. If we do the appro-
priate geometry we see that the two are related by the following transformation:

x′ = x cos(θ) + y sin(θ)
y′ = y cos(θ)− x sin(θ).

What these equations mean is that given any point p in the plane with
coordinates in S given by (x, y), we can find the corresponding coordinates of
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Figure 1: xy-plane with 2 different coordinate systems.

the same point in S′ given by (x′, y′). Depending on our coordinate system, the
same point can have different coordinates. We’ve known this since we started
doing vector analysis: the same vector will have different components in different
coordinate systems, but the length of the vector is the same in all of them.

In relativity, space and time are connected similarly to how the two dimen-
sions of the plane were connected. If an observer is moving, her coordinate
system is different, so she assigns different values of position and time to events
than someone who is not moving.

Figure 2: Basic space-time diagram.
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We can now draw a new diagram (fig.2) like the last one for this new sit-
uation. We begin by making our axis to be x and ct, where c is the speed
of light (so that the time axis is measured as a length - the reason for this is
forthcoming).

Note that we are accustomed to having time horizontal and space vertical
when we draw graphs. But, space-time diagrams are always drawn the other
way around. We just have to get used to this.

Now, any point on this graph is an event - it is a moment in space and in
time. How about lines? If we let the slope of the line by measured from the
ct-axis, its value will be

tan(θ) = slope =
opp
adj

=
∆x

c∆t
=

v

c
= β,

that is, the slope of the line is a speed. Thus we can interpret a straight line
with slope β from the y−axis as something moving with that constant speed.
Moreover, the slope gives us the tangent of the angle made with the y axis,
β = tan θ.

What if it moves at the speed of light? Then the slope is β = 1 and we have
a line of slope 1, that is, at 45◦. This is why we scale the time axis by c - to
get the light rays to appear as 45◦ lines. Light lines are of central importance
in SR (they are invariants) so we want their representation to be as simple as
possible. Note now that any physical motion must have β < 1, so that the line
representing that motion is always sloped less with respect to the y-axis than
45◦.

Now, since a sloped line represents the motion of another observer, say, that’s
the next part of the diagram. That line is the time axis ct′ of the moving ob-
server. What about the x′ axis? Well, remember that Lorentz transformations
preserve the speed of light, so we must have

c =
∆x

∆t
=

∆x′

∆t′
,

which means that if the t′ axis is rotated to the right by θ, then the x′ axis is
rotated up by θ! (See fig.3).

Now we can represent two (or more) observers on the same graph. We answer
all of our questions by translating between coordinates in S and coordinates in
S′ by using the Lorentz transformation equations:

x′ = γ(x− βct)
ct′ = γ(ct− βx).

What we have done so far is build a little machinery to make SR calculations
easier. Learning new machinery is difficult for 2 reasons. First, it’s something
new to learn and we might now know how to apply it. Second, we don’t know
how this will actually make our lives easier - it’s just excess baggage. Well, we’ll
use these diagrams to solve most of the problems in this chapter and through
these examples we’ll gain an appreciation of how these help clarify the problems
at hand.
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Figure 3: Space-time diagram with two reference systems.

36-4

In this problem, the father wants take a very speedy trip, so that his daughter
left on earth will age 40 more years than he does. But he ages 4 years during the
trip, so she must age 44 years total. More explicitly, if we let n be the daughters
initial age and m her final age, we have

age d f
i) n n + 20
f) m m− 20

The we have (m − 20) − (n + 20) = 4, that is, the father ages 4 years.
Simplifying the expression yields m − n = 44, so that the daughter ages 44
years.

On the diagram below (fig.4) the daughter stays on earth, so her line is just
the ct axis. She is at x = 0 at every time t. The father moves with constant
speed away from earth for 2 years in his frame (t′ = 2yr) and then abruptly
turns around and heads back to earth at the same constant speed for another 2
years (in his frame). The daughter ages 44 years in her frame during the whole
trip, or 22 years on the father’s way out and 22 more on his way back.

So, our event of interest is when the father turns around in his trip. We
know both the t and t′ coordinates of this point, so lets see if we can find the
corresponding β. The Lorentz time transformation says that

ct′ = γ(ct− βx),

so that we need to know x, that is, how far the daughter measures the father
to have traveled before turning around. Well, if the father moves with constant
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Figure 4: Space-time diagram for 37-4.

speed v = βc and for a time t, then the distance traveled is

x = vt = βct.

We could also determine this from the second Lorentz transform equation noting
that the x′ coordinate of when the father turns around is exactly 0 because one
is always at rest in their own frame of reference (the origin of his coordinate
system is always centered on him). Then we have

0 = x′ = γ(x− βct),

which immediately gives x = βct since γ 6= 0.
So, now we can substitute for x giving

ct′ = γ(ct− β(βct))
= γct(1− β2)
= γct(γ−2)
= ct/γ,

or
t′ =

t

γ
,

which is the equation for time dilation: since γ > 1 the time t measured in the
stationary frame is larger than the time t′ measured in the moving frame by the
factor γ. Note that we made the substitution 1−β2 = γ−2. (Show this is true.)

Now we just substitute in for gamma and solve for β

t′ =
√

1− β2t

(t′)2 = (1− β2)t2
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(
t′

t

)2

= 1− β2

β =

√
1−

(
t′

t

)2

=

√
1−

(
2
22

)2

= .996.

37-5

In this problem we can to compare measurements made in the stationary lab
frame with those ’made’ by a moving particle. In the diagram below (fig.5), x
is the distance traveled by the particle in the lab frame before it disintegrates,
and t is the corresponding time (measured in the lab frame). Then t′ is the time
interval until the disintegration as measured by the particle.

Figure 5: Space-time diagram for 37-5.

We can see that the problem is very similar to the last one. In fact, all the
algebra is going to be the same and we will just quote the result that

ct′ =
ct

γ
.

Now, we don’t know t this time, but we do know x and β, the other quantities
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measured in the lab frame. We have

ct =
x

β
=

1.05 mm
.992

= 1.0585 mm.

We can also compute γ:

γ =
(
1− .9922

)−1/2
= 7.9216.

Then we have
ct′ =

ct

γ
=

1.0585 mm
7.9216

= .13362 mm,

or t′ = 4.45× 10−13 s.

37-9

In this problem we are concerned with measurement of the length of a moving
object. We measure an object by noting where the front and back of the object
is at the same time and then find the length between these two places. When
we say the ’rest length’ we mean the length of an object as measure when the
object is at rest, that is, how long the object judges itself to be (since anything
is always at rest with respect to itself).

In the diagram (fig.6), the moving frame is that of the space ship. The ct′

axis will denote the rear of the space ship (the rear is at x′ = 0 at every time
t′), and a line parallel to the ct′ axis through x′ = L′ will denote the front of
the ship (the front is at x′ = L′ at every time t′). We then note that L′, the
length of the ship as measured in the ship’s frame, is the rest length of the ship.

Now, what we want to do is measure the length of the ship in the stationary
frame. How do we do this? We pick some time, say t = 0, and measure where
the front and back of the spaceship are at those times and take the difference.
We know that at t = 0 the rear of the spaceship is at the origin, so xR = 0 (the
rear). Where’s the front end? Well, we know that x′ = L′ always, so lets see if
we can use the Lorentz transformation to find out where this is in the stationary
frame.

x′ = γ(x− βct)
x′ = γx

L′ = γL,

since we measure at t = 0, and L and L′ are the lengths in the lab and ship
frames respectively. We have γ = (1− .7402)−1/2 = 1.4868, so

L =
L′

γ
=

130 m
1.4868

= 87.44 m.

We have just deduced the relativistic length contraction formula from the space-
time diagram.
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Figure 6: Space-time diagram for 37-9.
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Next we want to know how long it takes for the ship to pass a given point
as measured by the lab. Well, we have a measurement of how fast the ship is,
and we have a measurement of how long it is (we just found it), so we can find
the time by dividing:

ct =
L

β
=

87.44 m
.740

= 118.162 m,

or t = 3.94× 10−7 s.

37-12

This problem is a measurement problem much like the previous one, where the
moving object is measured to be half as long as its rest length, that is

L =
1
2
L′,

but we know that lengths are measured shorted by exactly γ, so we must have
γ = 2. The corresponding β is then given by

β =
√

1− γ−2 =
√

1− 1/4 =
√

3/2 = .8660.

Next, since moving clocks are judged to run more slowly by the factor γ (see
problem 4), the clock here runs slower by γ = 2, that is, half as fast.

37-13

In the figure below (fig.7) the ct axis represents the earth. The line at x = 26
ly represents vega (it is a distance x = 26 ly away from earth at all times t).
The line from the origin to vega is the travelers path to vega. Once at vega the
traveler send a (light) signal back to earth which travels with β = 1 (always the
case for light).

Since we know the speed of the traveler and the distance to vega as measured
by earth we can calculate the time of travel as measured by earth by dividing
as usual

t =
x

v
=

26 ly
.99c

=
26 c · 1 yr

.99c
=

26 yr
.99

= 26.26 yr,

where we used the fact that a light-year is the distance traveled by light in one
year, which is the speed of light times one year.

Now, the light sent by the traveler back to earth travels at the speed of light,
so it takes 26 years to make the trip since it travels 26 ly. So the total time is
26 ly + 26.26 ly = 52.26 ly.

Finally, to find how long the traveler judges the trip to have taken, we use
the time dilation formula from problem 4 to get

t′ =
t

γ
=

√
1− β2t =

√
1− .992(26 ly) = 3.70 yr.
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Figure 7: Space-time diagram for 37-13.

37-30

This problem discusses how the measurements of the speed of an object as made
by two different observers are related. Since nothing can go faster than light as
seen by any observer, we know the the relationship isn’t going to be the same
as in Galilean relativity. In the diagram below (fig.8) we have time axis from 3
different observers. The ct axis is the ’stationary’ observer, S. The S′ observer
(ct′ axis) moves with speed β1 as measured by S, and the observer S′′ (ct′′ axis)
moves with speed β2 as measured in S. We will then let β′

2 be the speed of S′′

as measured by S′.
Note that we have labeled the angles between the time axis in the figure.

We have
θ2 = θ1 + θ′2.

Now, remember from the section on space-time diagrams that the angle θ is
related to the velocity parameter β by β = tan θ. So, lets take the tangent of
the above equation relating the various angles and try to convert it all to β’s:

θ2 = θ1 + θ′2

tan θ2 = tan(θ1 + θ′2)

tan θ2 =
tan θ1 + tan θ′2

1− tan θ1 tan θ′2

β2 =
β1 + β′

2

1− β1β′
2

,
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Figure 8: Space-time diagram for 37-30.

where we used a trig identity from the back of the book and in the last line
substitute each tan θ for the corresponding β. This is the formula for converting
speed measurements of a third object (here S′′) between two frames (S and S′).

The data given is

β1 = .62
β′

2 = .47.

That is, we know the speed of the second frame as measured by the first, and
the speed of the third as measured by the second. So we can use the above
formula to find β2, the speed of the third as measured by the first. We have

β2 =
.47 + .62

1− (.47)(.62)
= .844.

The classical counter part to this formula is the numerator only

β2 = β1 + β′
2 = .47 + .62 = 1.09,

which gives a velocity greater than that of light. We then see that it is the
denominator in our formula which ensures that no velocity can ever be measured
to be greater than light.

In the next part the third object is moving in the opposite direction as seen
by S′, that is, β′

2 = −.47 now. But he calculations are the same:

β2 =
−.47 + .62

1− (−.47)(.62)
= .21,

11



while the classical calculation is

β2 = −.47 + .62 = .15,

and agrees more closely with the relativistic calculation since the speed is not
as close to the speed of light.

37-33

This problem is very difficult without the aid of a space-time diagram to keeps
things straight. In the diagram (fig.9), the S frame is the stationary space
station, S′ is the armada, and S′′ is the messenger ship. The two events of
interest are when the messenger leaves the armada (we choose the origin) and
when it reaches the front of the armada. These are labeled as (1) and (2). The
rear and front of the armada are the ct′ axis and a line parallel to that axis
through x′ = L′ = 1 ly, the rest length of the armada.

Figure 9: Space-time diagram for 37-33.

Now, what we need to calculate is the time coordinate in all three reference
systems of when the messenger reaches the front of the armada. Since this is
an event in space-time, all we need to do is calculate the time in one coordinate
system and then convert it to the others using Lorentz transformations. I will
do the calculations in the stationary S frame an then transform to the others.

As seen by S, the messenger starts at the origin and then moves with βM =
.95 until it reaches the front of the armada. But the armada is also seen to be
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moving with speed βA = .8. So the ship has to move the length of the armada
and move an extra distance since the armada is moving. S will judge this to
take a time t. Let us denote the total distance moved as x (as judged by S).
Then we have

x = βM (ct) = L + βA(ct),

where L is the length of the armada as judged by S. Make sure this expression
makes sense to you as it is the crux of the problem.

Now that we’ve established that relationship we can solve for t once we
know the length L of the armada as measured by S. The armada will be length
contracted (it is moving as seen by S), so we have

L =
L′

γA
,

where γA = (1 − β2
A)−1/2 = (1 − .82)−1/2 = 1.667. Be careful to use the right

γ’s and β’s! Then

L =
1 ly

1.667
= .6 ly.

Finally we have

βM (ct) = L + βA(ct)

ct =
L

βM − βA

ct =
.6 ly

.95− .8
ct = 4 ly
t = 4 yr.

Now we need to know the x coordinate of this event before we can transform
it to the other systems. We have (substituting), that

x = βM (ct) = (.95)(4 ly) = 3.8 ly.

So the hard work is done. Now we use the Lorentz transformations (again,
being careful to use the right β’s)

ct′ = γA(ct− βAx)
ct′ = 1.667(4 ly − .8(3.8 ly))
ct′ = 1.6 ly
t′ = 1.6 yr,

and

ct′′ = γM (ct− βMx)
ct′′ = 3.2(4 ly − .95(3.8 ly))
ct′′ = 1.25 ly
t′′ = 1.25 yr.

As an exercise to the reader, find x′ and x′′. What do these mean?
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37-43

OK, no diagrams for these. The kinetic energy of a particle in SR is given by

K = (γ − 1)mc2.

I will briefly give a reason as to why the definition should be different. Suppose
we apply a constant force to a particle. Then the work done is

∆K = W = F∆x.

The problem we have is that, since F is constant, the kinetic energy should
increase proportionally to ∆x. But the speed of the particle is bounded above
by c. So the definition of kinetic energy as mv2/2 gives a maximum value of
mc2/2 for the kinetic energy. Thus we need a new definition that has value 0
when v = 0 and increases to infinity as v → c. The definition above does exactly
that since γ → 1 as v → 0 and γ →∞ as v → c.

In any case, a change in kinetic energy can be expressed as

∆K = Kf −Ki

= (γf − 1)mc2 − (γi − 1)mc2

= (γf − γi)mc2,

but since γ increases non-linearly with v, the answer will depend on the starting
value of v, not just the change in v. We have

γi = (1− .182)−1/2 = 1.0166
γf = (1− .192)−1/2 = 1.0185,

so that

W = (1.0185− 1.0166)(511 keV/c2)c2 = 971 eV ≈ 1 keV,

since the mass of an electron is 511 keV/c2.
for the second part we have

γi = (1− .982)−1/2 = 5.025
γf = (1− .992)−1/2 = 7.088,

so that
W = (7.088− 5.025)(511 keV/c2)c2 = 1.05 MeV,

which is about 106/103 = 1000 times larger!

37-53

The mass of the aspirin is 320 mg = 3.2× 10−4 kg. The energy ’equivalent’ is

E = mc2 = (3.2× 10−4 kg)(3× 108 m/s)2 = 2.88× 1013 J.
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Now, the car goes 12.75 km for every liter of gas and each liter of gas provides
3.65 × 107 joules of energy. Thus the distance traveled for a given amount of
energy is

dist
energy

=
12.75 km

L
· 1 L
3.65× 107 J

= 3.49× 10−7 km/J.

Thus the distance traveled when powered by an aspirin is

dist =
dist

energy
· energy

= (3.49× 10−7 km/J)(2.88× 1013 J)
= 107 km!

By comparison, the circumference of the earth is 4×104 km, so that the aspirin
would allow the car to go around the earth about 250 times before running out!
Now that’s some sweet gas mileage.
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