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RLC Circuits

Electrical circuits are more good examples of oscillatory behavior. The general
circuit we want to consider looks like

L

C

R

E

which, going counter-clockwise around the circuit gives the loop equation

E − IR− q

C
− LdI

dt
= 0,

where I is the current in the circuit, and q the charge on the capacitor as a
function of time.

We note that I = dq/dt and dI/dt = d2q/dt2, so that our equation becomes
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q = E (t),

and we will first look the undriven case E = 0. This gives the following equation
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C
q = 0,

which should be familiar - a second degree ordinary differential equation with
constant coefficients. We saw this same equation when we studied damped
motion. In fact, this is the same equation and describes essentially the same
phenomenon. Let us compare:
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1



It doesn’t take long to see that the equations are identical with the following
correspondence:

t ↔ t
x ↔ q
m ↔ L
b ↔ R
k ↔ 1/C,

where we simply compare term-by-term. NOTE that it is the capacitor that cor-
responds to the spring not the inductor, even though the picture of an inductor
looks like a spring!

So, charge is like displacement, inductance like mass (inertia), resistance like
damping, and capacitance like compliance (inverse springiness). Now that we
have the variable correspondence we can write down the solution by comparison:

x(t) = Ae(−b/2m)t cos(ω′t+ ϕ), ω′ =

√
k

m
−
(

b

2m

)2

↓

q(t) = Ae(−R/2L)t cos(ω′t+ ϕ), ω′ =

√
1

LC
−
(
R

2L

)2

.

So the behavior of our circuit is characterized by damped oscillations of the
charge on the capacitor.

Note that when we have no resistance (R = 0), our equation simplifies to

d2q

dt2
= − 1

LC
q,

which is the equation for simple harmonic motion with frequency

ω2 = 1/LC.

Now, it is in general very difficult to solve this equation when E 6= 0. An
important method is the Laplace Transform, which turns our differential equa-
tion into an algebraic one, which is (hopefully) easier to solve. Conceptually
you get the following:

Diff. Eq. Alg. Eq.

Alg. Sol.Diff. Sol.

L

L −1
algebrafree

where L stands for the Laplace transform and L −1 its inverse. In any case,
if we take a sinusoidal emf E = E0 sin(ωdt), then the above procedure tells us
that we obtain a state of resonance in the circuit when

ω2
d = ω2

0 − 2

(
R

2L

)2

,
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where ω2
0 = 1/LC, which is just a little bit different from what we’d expect.

The stuff on the right is the ’natural frequency’ of the circuit, but we’re going
to assume that R is small enough that the resonance frequency is simply given
by ω0. How small? Well, we need that second frequency in the above equation
to be very small compared to the first, or

R2

2L2
<<

1

LC
,

which, when solved for R gives

R <<

√
2L

C
≈
√
L

C
,

since
√

2 ≈ 1 (order of magnitude). We will even assume R to be ’small’ so
that we can solve for it nicely in one problem. It’s a good idea to go back, after
finding R, to make sure it actually does satisfy this condition, otherwise the
assumption was wrong and our value of R is no good!
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