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Vertical Springs

Vertical Spring problems are more complicated than their horizontal counter-
parts, but they’re really just a more general case. In fact, we can look at springs
on any angle of an incline for a continuous range of problems. We begin our
analysis with a spring hanging without any mass. The spring length (now un-
stretched) is l. Now, suppose we hang a mass on the spring and then gently let
it stretch the spring until equilibrium is achieved, and suppose this stretching
to have length ∆l. Then Newton’s Second Law says that:

ΣFy = −k∆l−mg = 0,

(∆l is negative) which gives us our expression for the stretch of the spring from
the old equilibrium position ∆l = −mg/k. Notice that the new equilibrium
position of the system (no force) is different from the old one (no stretch in the
spring). The two are the same only when a spring is horizontal.

Now, suppose the spring is further stretched from the new equilibrium posi-
tion, so that the total stretching is y. Then we have

a = F/m

d2y

dt2
= − k

m
y − g

= −ω2
0y − g

= −ω2
0

(
y +

g

ω2
o

)

= −ω2
0(y −∆l)

where we have set ω2
0 = k/m. Note that we don’t know the angular frequency

yet - this was simply an algebraic replacement. This last equation suggests that
we define a new quantity ȳ = y −∆l, since derivatives annihilate constants. A
quick calculation gives the equation

d2ȳ

dt2
= −ω2

0ȳ,
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which is the usual equation for harmonic motion. Now we can conclude that ω0

is in fact the angular frequency, and the mass executes oscillations with respect
to the new equilibrium position.

Thus, the total effect of having a vertical spring is to shift the equilibrium
position down by the amount mg/k, so that at equilibrium the spring is under
tension and has energy. Make sure you remember this when computing energies.

Finally, note that if we have a spring on an incline, the equilibrium position
is determined by

ΣFy = −k∆l−mg sin(θ) = 0,

where θ is incline angle. Thus we see that the separation between the new and
old equilibrium depends on that angle and goes to zero as the angles does, which
is a horizontal spring. Here the two positions are degenerate (the same).

15-59.

The solution for a damped spring can be written in the form

x(t) = A(t) cos(ωt+ ϕ)

where we have
A(t) = Ae−bt/2m

When written in this form it is obvious that the non-damped spring is written
the same way with A(t) = A is time-independent. In any case, part a) refers to
the amplitude only - the A(t). Thus, since

A0 = A(0) = A

we have

A/3 = A(t) = Ae−bt/2m

3−1 = e−bt/2m

− ln 3 = − bt

2m

t = 2 ln 3
m

b
= 14.33s.

There are a few ways to consider the next part. If there are n oscillations
then the angle has changed by an mount 2πn, that is

∆θ = 2πn = ωf − ωi = (ωt+ ϕ)− (ϕ) = ωt.

Which yields

n =
ωt

2π
= ft =

t

T
,
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expressed in various ways (note that we don’t need ϕ). Thus all we need is ω
for a damped system, which is given by

ω =

√
k

m
−
(

b

2m

)2

.

15-79.

What we have to note here is that the condition of the cars before the bottom
one breaks away enables us to determine the spring constant of the rope since
the system was in static equilibrium. The component of weight along the incline
of the 3 cars balances the spring force, so Newton’s Second Law gives us

3mg sin(θ) = Fs = kx

where m is the mass of one car and x the stretch of the spring, so solving for k
yields

k = 3mg sin(θ)/x = 9.81× 105 N/m,

which allows us to determine the frequency. But, be careful, only two of the
cars oscillate, so the mass now is 2m!

Now, for the amplitude we note that the breaking free of the bottom car
set our initial conditions: the string is stretched by x = 15 cm and the initial
velocity is zero. When the bottom one breaks free our forces are unbalanced
so the net force up the incline is still fs = 3mg sin(θ), but the gravitation part
downward is only 2mg sin(θ). The net force is then kA (since we oscillate about
the new equilibrium position), so

A =
Fnet
k

=
mg sin(θ)

3mg sin(θ)/x
=
x

3
.

Another way to do this part is to to write A = x−∆l, and find the stretch
of the spring from its unstretched length as we did before. Both expressions
should agree.

15-87.

The point of this problem is to give some practice in evaluating the two constants
A and ϕ given an initial condition. We have the equations

x(t) = A cos(ωt+ ϕ) v(t) = −ωA sin(ωt+ ϕ)
x(0) = A cos(ϕ) v(0) = −ωA sin(ϕ),

from which we can evaluate the initial conditions. Now, one condition is that
V (0) = 0, which yields

0 = ωA sin(ϕ),
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so either ω, A, or sin(ϕ) is zero. Our oscillator would be boring if either the
first two were true, so we go with the last one, which means either ϕ = 0 OR
ϕ = π. Make sure you realize the angle can have multiple values!

Next, we use the position condition

x(0) = .37 = A cos(ϕ).

Since we (usually) take A to be a positive quantity, we need ϕ = 0, since
otherwise cos comes out negative. But, cos(0) = 1, so A = .37.

Note, we could have used ϕ = π and A = −.37. Either is fine.

15-96

Like all problems that change the basic setup, we need to go back to FBD’s
before we can apply our spring results. The forces acting are gravity, spring,
normal, and friction (rolls without slipping!). So, taking our center of torque to
be the center of the wheel, we get

ΣFx = N −mg = 0

ΣFy = −kx− Ff = ma

Στ = −FfR = Iα

where I is the moment of inertia and R the radius. Note that acceleration to
the right means clockwise rolling, or negative angular acceleration, so a = −αR.
Eliminating Ff from the second two equations yields

−kx+
Iα

R
= ma

−kx− Ia

R2
= ma,

or, after collection of terms and rearranging

a

(
m+

I

R2

)
= −kx

Thus we have an equation of the form

a = ω2x,

but with

ω2 =
k

m+ I/R2
,

that is, we still have simple harmonic motion, but the rolling inertia makes our
‘effective mass’ larger. In this case I = mR2/2, so

ω2 =
k

3m/2
=

2

3

k

m
.
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It is straightforward to show the period is as advertised at this point.
The total energy any point is the sum of three terms:

E = Krot +Ktrans + Us.

Notice that ω = v/R, so that

Krot =
1

2
Iω2 =

1

2

(
1

2
mR2

)( v
R

)2

= Ktrans/2.

Now,

E =
3

4
mv2 +

1

2
kx2,

and the time derivative of E is

dE

dt
=

3

2
mv

dv

dt
+ kx

dx

dt

=
3

2
mva+ kxv

= v

(
3

2
ma+ kx

)
= 0,

where the last follows since E is constant. This equation is identical to the one
derived above.
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