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ABSTRACT

The recently proposed Cooperstock-Tieu galaxy model claims to explain the

flat rotation curves without dark matter. The purpose of this note is to show

that this model is internally inconsistent and thus cannot be considered a valid

solution. Moreover, by making the solution consistent the ability to explain the

flat rotation curves is lost.

Subject headings: galaxies: kinematics and dynamics-gravitation-relativity-dark

matter

1. Introduction

Cooperstock and Tieu model a galaxy in general relativity as an axially symmetric,

pressure free dust cloud with metric

ds2 = −ew(cdt−Ndϕ)2 + r2e−wdϕ2 + ev−w(dr2 + dz2) (1)

where w, v, and N are functions only of r and z, thus the metric is stationary (Cooperstock

& Tieu 2005). They further assume their coordinates to be co-moving with the galactic dust,

thus

uµ = e−w/2δµ
t (2)

is the four-velocity.

By performing a local diagonalization of the metric they obtain a relation between the

metric and local angular velocity as

ω =
cNew

r2e−w −N2ew
≈ cN

r2
(3)
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where the approximate value is appropriate to the order they consider. The tt and tϕ Einstein

equations are respectively

r−2
(
N2

,r + N2
,z

)
=

8πGρ

c2
(4a)

N,rr −
1

r
N,r + N,zz = 0. (4b)

The second equation is equivalent to the formula

∇2Φ = 0 (5)

where they have defined1

Φ =

∫
N

r
dr. (6)

Thus the observed rotation curve becomes a boundary condition for the solution to

Laplace’s equation (5) which they take in the form

Φ =
∑

n

Cne
−kn|z|J0(knr) (7)

where the kn are chosen for orthogonality over the radius of the galaxy. Once N is found

by fitting this function to the obsersved rotation curve, they derive the density by (4a) and

in this way they obtain an excellent fit to the data while obtaining a density profile that

accords with observation.

However, it has been pointed out (Korzynski 2005; Vogt & Letelier 2005) that, since the

solution depends on |z|, equation (4b) is not satisfied, but rather yields a singular contribu-

tion to the z = 0 plane, which has the properties of an exotic form of matter. It may be

wondered whether this singular disk can be removed by choosing a different solution form or

by increasing the complexity of the model. However, in the following analysis we will show

that this is not possible and that model fails to accord with general relativity.

2. Analysis

Assuming this form of the metric, and without making any approximations, the scalar

of volume expansion Θ ≡ uµ
;µ vanishes (a semicolon denotes covariant differentiation and a

comma denotes partial differentiation). Defining the space-projection tensor

hµν = gµν + uµuν (8)

1It should be noted that this Φ is not the Newtonian gravitational potential.
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the shear tensor is given by2

σµν = u(α;β)h
α

µh
β

ν (9)

and this vanishes as well3. However, the vorticity tensor, given by

ωµν = u[α;β]h
α

µh
β

ν (10)

does not vanish, but has nonzero components

ωϕr = −ωrϕ = 1
2
ew/2N,r (11a)

ωϕz = −ωzϕ = 1
2
ew/2N,z. (11b)

Though the matter in this model does indeed rotate, the rotation is rigid and thus cannot

characterize a galaxy which is differentially rotating. It should be emphasized that since σµν

is a tensor, this cannot be a coordinate effect.

With the present solution Raychaudhuri’s equation (Ciufolini & Wheeler 1955) simplifies

to

−ωµνω
µν = Rtt/gtt (12)

and in fact reduces to the condition ∇2w = 0. This condition is demanded in Cooperstock

& Tieu (2005) on the grounds that the geodesic equation be satisfied. This is equivalent to

saying that the geodesics must be circular orbits about the z-axis, which should not hold in

general. Orbits in the z = 0 plane should indeed be azimuthal, but we cannot expect this

behavior off that plane. That Raychaudhuri’s equation demands this condition again reveals

the rigidity of the rotation4.

Now, if we seek solutions to (4b) that are symmetric about the plane, and singularity

free, then must require N to be independent5 of z. Thus (4b) has the trivial solutions

N = A or N = Br2 (13)

where A and B are constants. The first solution leads to zero density and the second

to a constant density under rigid rotation, according to equations (3) and (4a). Thus it

2(µ, ν) and [µ, ν] denote symmetrization and antisymmetrizaion with respect to the enclosed indices,
respectively.

3The vanishing of shear was also found by Bonner in his solution (Bonner 1977).

4Actually, any co-moving coordinate system requires gtt = −1 as the coordinate points are in free fall
and thus keep proper time (Weinberg 1972), which here requires w ≡ 0.

5We could choose cosh(z), but this would lead to an exponentially increasing matter density.
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appears that the physical origin of the singularity is in attempting to describe, in co-moving

coordinates, a non-rigidly rotating dust cloud, which the metric (1) cannot.

Next, in order to solve the Einstein Equations Cooperstock and Tieu perform an ex-

pansion of the metric in
√

G and conclude that the functions w and v are of second order,

but the function N , which couples to the rotation, is of first order. Strictly speaking, this

expansion is not well defined as the expansion parameter has dimensions. We can form the

dimensionless parameter

λ =

√
GM

Lc2
(14)

where M is some characteristic mass of the system and L some characteristic length (for

example, the mass and radius of the galactic core). We then compare equations (4b) and

(3):

λ2r−2
(
N2

,r + N2
,z

)
=

8πGρ

c2

λ
Nc

r
= v

where the order has been shown explicitly. Substituting v for N in the first equation yields

the relation

v = O
(√

8πGρL2
)

(15)

where we have taken derivatives to be of order 1/L. This can be rewritten as

v = O

(
cλ

√
ρL3

M

)
(16)

and since the quantity under the square root is of order unity, we have

v

c
= O(λ) = O

(√
GM

Lc2

)
(17)

which is expected from Newtonian theory and is the basis of the PPN expansion.

Now, suppose we choose a coordinate system in which the galactic dust has coordinate

velocity ω/c, so that the stress-energy tensor has the form

T µν ∝


1

ω

c

ω

c

(ω

c

)2

 (18)
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in the tϕ-subspace. The tϕ-Einstein equation then has the form

Gtϕ =
8πG

c2
T tϕ ∝ 8πG

c2

ω

c
(19)

up to a factor of order unity due to the constraint condition uµu
µ = −1. Thus, the right

hand side of this equation begins at order λ3/L2 according to (17), whereas the left hand side

is of order λ/L2 according to (4b), since N is assumed to be of order λ. Thus the assumption

that N is of first order is inconsistent, while consistency requires that N be of at least third

order6.

Moreover, given the form of the stress-energy tensor above, suppose we make a global

transformation ϕ → ϕ + ω(r, z)t to the co-moving frame, so that all components of the new

stress-energy tensor vanish except the density. The new metric will have the same form as

the old metric, but for the differential dϕ′ we have

dϕ′ = ωdt + dϕ + t(ω,rdr + ω,zdz) (20)

which necessarily introduces time-dependence into the new metric unless ω is spatially-

independent, that is, unless the rotation of the matter is rigid. Thus, contrary to the

assumption of Coopertock and Tieu, the metric (1) cannot both be co-moving and time-

independent. This accords with zero value of the shear tensor above.

It can be seen in the following figure that a co-moving metric of a differentially rotating

system is time-dependent and possesses shear. Here, r-coordinate lines “twist” up in time

relative to observers at spatial infinity. ϕ = ωt has been plotted, where ω(r) is the fit to the

Milky Way from Cooperstock & Tieu (2005).

Fig. 1.— The twisting of r-coordinate lines for various ϕ at two different times as seen by

observers at spatial infinity.

3. Non-co-moving Expansion

In this section we carry out an expansion of the metric (1) in a system of reference in

which the galactic dust has coordinate velocity

u2

u0
=

dϕ

dct
=

ω

c
(21)

6This will be demonstrated more explicitly in the next section.
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which is physically the angular velocity measured by observers at spatial infinity (Bardeen &

Wagoner 1971). In this direct approach we will show that the angular momentum coupling

is too weak to account for the flat rotation curves.

We expand the metric (1) as

gtt = −1− 2
w − 4

w +O(λ6) (22a)

gtϕ =
1

N +
2
w

1

N +
3

N +O(λ5) (22b)

gϕϕ = r2−
1

N2 −r2 2
w +O(λ4) (22c)

grr = gzz = 1+
2
w − 2

v +O(λ4) (22d)

where the over-script indicates the order of the term in λ, which is the same as defined

in (14). The presence of only even terms in the gµµ and odd in gtϕ are for the appropriate

behavior under time-reversal (Weinberg 1972).

The constraint condition uµu
µ = −1 requires that

ut = (gtt + 2
ω

c
gtϕ +

ω2

c2
gϕϕ)−1/2 (23)

and thus the stress energy tensor has the expansion

T tt = ρc2

(
1− 2

w +
r2ω2

c2

)
+O(λ4) (24a)

T tϕ = ρc2ω

c
+O(λ3) (24b)

Tϕϕ = ρc2ω2

c2
+O(λ4) (24c)

As seen in the previous section, 8πG/c2 increases the order by two so that the right-hand

side of the Einstein equations are of second order and higher, thus the tϕ equation to first

order is
1

N ,rr −
1

r

1

N ,r +
1

N ,zz= 0 (25)

so that the lowest order term of N is sourceless. We are free to choose
1

N however we wish

to make the solution simplest, thus we set
1

N= 0. With this selection the Einstein equations

through third order become

−∇2 2
w +1

2

(
2
v,zz +

2
v,rr

)
=

8πGρ

c2
(26a)

2
v,r = 0 (26b)
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2
v,zz +

2
v,rr = 0 (26c)
2
v,z = 0 (26d)

−1
2
r−2

(
3

N ,rr −
1

r

3

N ,r +
3

N ,zz

)
=

8πGρrω

c3
. (26e)

We see that
2
v must be a constant so that we have

∇2 2
w = −8πGρ

c2
(27a)

3

N ,rr −
1

r

3

N ,r +
3

N ,zz = −16πGρr3ω

c3
. (27b)

Thus we see that the coupling to the angular momentum is of third order, there is no longer

a nonlinear term in the mass density7, and we can identify

2
w= −2Φ

c2
(28)

with the Newtonian gravitational potential.

If we analyze circular orbits on the plane the geodesic equation demands that

Γµ
tt + 2Γµ

tϕ

ω

c
+ Γµ

ϕϕ

ω2

c2
= 0 (29)

which to third order can be written for µ = r as

v2

r
= −Φ,r

(
1 +

v2

c2

)
− vc

r

3

N ,r (30)

which is recognized as the Newtonian centripetal equation plus second order corrections8.

Thus the matter essentially moves according to the predictions of Newtonian gravitation

with corrections of order v2/c2, which cannot account for flattening of the rotation curves

without extra non-luminous matter.

Finally, we can compute the shear tensor, which has the non-zero components

σtr = σrt = −(ut)3r2

2c2
ωω,r (31a)

σtz = σzt = −(ut)3r2

2c2
ωω,z (31b)

σϕr = σrϕ =
(ut)3r2

2c
ω,r (31c)

σϕz = σzϕ =
(ut)3r2

2c
ω,r (31d)

7Even when Gtt is written to fourth order the nonlinearity due to N is not present.

8The presence of the c in the last term effectively lowers the order by one.
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all of which vanish exactly when ω is constant.

4. Conclusion

It has been shown that the Cooperstock-Tieu galaxy model is inconsistent as a general

relativistic model and that a proper model fails to account for the flatness of the rotation

curves without the dark-matter hypothesis. This failure is due to the weakness of the metric

coupling to the angular momentum of the galaxy.

However, the flat rotation curves seem to imply a large inertial induction effect, where

the rotating inner matter boosts the rotation of the outer matter, leveling off the rotation

curve, which is what the Cooperstock-Tieu model attempts to describe within general rel-

ativity. Since their solution predicts a matter density well within visible limits it is quite

possible that their solution represents an alternative, more Machian, gravitational theory

where inertial induction effects are much larger than in General Relativity.

The author is greatful to Prof. R. Gilmore for his encouragement and many helpful

discussions on this project.
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