


Outline

Rotations in Q.M.

Topology of the Rotation Group
Pauli Spinors

Anyons

Weyl & Dirac Spinors



Rotations in Q.M.

Rotational Invariance, + — Rx



Rotations in Q.M.

Rotational Invariance, + — Rx

State |¢) — U(R) [¢)



Rotations in Q.M.

Rotational Invariance, + — Rx
State |¢) — U(R) |¢)
Inner Product (¢ | ) — (6| UTU [¢) = (¢ | %)



Rotations in Q.M.
Rotational Invariance, + — Rx
State |)) — U(R) |)

Inner Product (¢|v) — (6| UTU [4) = (¢ |4)
Representation U(R;)U(R2) = U(R1R2)



Rotations in Q.M.

Rotational Invariance, + — Rx

State |)) — U(R) |)

Inner Product (¢|v) — (6| UTU [4) = (¢ |4)
Representation U(R;)U(R2) = U(R1R2)

cosa  sina cos3 sinfg
—sina cosa) \—sinf cos (3



Rotations in Q.M.

Rotational Invariance, + — Rx

State |)) — U(R) |)

Inner Product (¢|v) — (6| UTU [4) = (¢ |4)
Representation U(R;)U(R2) = U(R1R2)

cosa  sina cosf sinB\ _ [ cos(a+3) sin(a+ f)
—sina cosa) \—sinf cosf) \—sin(a+ ) cos(a+3)



Rotations in Q.M.

Rotational Invariance, + — Rx

State |)) — U(R) |)

Inner Product (¢|v) — (6| UTU [4) = (¢ |4)
Representation U(R;)U(R2) = U(R1R2)

cosa  sina cosf sinB\ _ [ cos(a+3) sin(a+ f)
—sina cosa) \—sinf cosf) \—sin(a+ ) cos(a+3)

But % |1)) represents the same state



Rotations in Q.M.

Rotational Invariance, + — Rx

State |)) — U(R) |)

Inner Product (6 | ) — (6| UTU ) = (6] )
Representation U(R;)U(R2) = U(R1R2)

cosa  sina cosf sinB\ _ [ cos(a+3) sin(a+ f)
—sina cosa) \—sinf cosf) \—sin(a+ ) cos(a+3)
But % |1)) represents the same state

Projective Representation U (R, )U (Ry) = e?(F1:F2) (R Ry)
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Two kinds of closed curves in SO(3):
1 rotation # 0 rotations
2 rotations = 0 rotations!
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Dirac Scissors  Trick
Ball in the Jell-O®
Spinors
Aharonov Susskind Current
Weyl cones
Rotating Dice
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U(R1)U(R2) = U(R1R2)
Two distinct loops in SO(3) = R — £U
SO(3) has two-valued representations.

Equivalent to a single-valued spinor representation of SU (2).
SU(2) —— SO(3) —— U(N)
Y — W J—— =l

—> Why we have only Fermions (spinor) and Bosons (true)!
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SO(2) and Anyons

Spin(n) — SO(n)is 2 : 1 and Spin(n) simply connected n > 3.
= For n > 3, n-space has only Fermions and Bosons.

SO(2) = S' and has infinitely many distinct loops, and no non-trivial
loop is closed in the universal cover, R.

— 2-space has Anyons!

R(27) : [¢) — €% |¢)) — spin s.
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SO(3,1) and Weyl Spinors

Symmetry of Relativity: Lorenz Group, SO(3,1)

S1(2,C) 2% 5y (2)

o ol

S0(3,1) =% 50(3)

Thus relativistic Q.M. has only Fermions and Bosons!
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Dirac Spinors
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“No one fully understands spinors. Their algebra is formally
understood but their geometrical significance is mysterious.
In some sense they describe the ‘square-root’ of geometry
and, just as understanding the concept of the square root of
-1 took centuries, the same might be true of spinors.”

Sir Michael Atiyah

Fin

Special thanks to the PovRay wizard, Tim Jones.
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