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Chapter 2 Solutions
1. a) Show that the overlap functions f±i ◦ (f±j )−1 are C∞, thus completing the demonstration given in

section 2.1 that S2 is a manifold.

b) Show by explicit construction that two coordinate systems (as opposed to the six used in the text) suffice to
cover S2. (It is impossible to cover S2 with a single chart, as follows from the fact that S2 is compact, but
very open subset of R

2 is noncompact.)

a) The maps are defined as acting on the standard embedding of the sphere into R
3. f±i is a projection of

upper (lower) hemisphere into the plane, for example

f±2 (x1, x2, x3) = (x1, x3),

and the others are similar. The inverse map stretches the plane up or down into the corresponding hemi-
sphere,

(f±2 )−1(y1, y2) = (y1,±
√

1 − ((y1)2 + (y2)2), y2),

and so on. The overlap map then projects out two of these coordinates, so up to exchanging coordinates it
is either of the two maps

(y1, y2) 7→ (y1, y2)

(y1, y2) 7→ (yi,±
√

1 − ((y1)2 + (y2)2)),

both of which are C∞ in their domain of definition, (y1)2 + (y2)2 < 1.

b) Construct a chart by drawing a line from the north pole N through any given point p 6= N on the sphere.
The point where this line hits the plane x3 = 0 is the image of p under the chart. This map is defined for all
points except N and is called stereographic projection from N . A similar chart defined at S (or any other
chart about S) then together with the first form an atlas for S2. An explicit form of the map can be found
geometrically. The line through p and N (thought of as vector in R

3) is (with N = (0, 0, 1))

p+ t(p−N) = (t(1 + p1), t(1 + p2), t(1 + p3) − t).

Solving for when x3 = 0 we get

t =
p3

1 − p3
,

which then gives

xi =
pi

1 − p3
.

The inverse maps are found similarly by starting with a point (y1, y2) in the plane, constructing the line
N + t(N − y) through N and y and finding where this hits the sphere:

1 = |x(t)|2 = (y1)2t2 + (y2)2t2 + (t+ 1)2,

which has solution

t =
−2

1 + |y|2
,

and gives the mapping

(y1, y2) 7→
1

1 + |y|2
(2y1, 2y2, |y|2 − 1).

1



2. Prove that any smooth function F : R
n → R can be written in the form equation (2.2.2).

Start with the fundamental theorem of calculus

F (x) − F (a) =

∫ x

a

F ′(s)ds,

and make the substitution s = t(x − a) + a, which linearly rescales the interval [a, x] to [0, 1]. Then
ds = dt(x− a) and we get

F (x) − F (a) = (x− a)

∫ 1

0

F ′(t(x− a) + a)dt,

which is the result for n = 1. If n > 1 then can write F : R
n → R as F = (F 1, . . . , Fn), where each

F i : R → R. Then apply the above to each F i. To check the derivative condition compute

∂ F

∂ x

∣

∣

∣

∣

a

= (x− a)
∂

∂ x

∫ 1

0

F ′(t(x− a) + a)dt+

∫ 1

0

F ′(t(x− a) + a)dt

∣

∣

∣

∣

a

=

∫ 1

0

F ′(a)dt

= F ′(a),

which is the result.

3. a) Verify that the commutator, defined by equation (2.2.14), satisfies the linearity and Leibnitz properties,
and hence defines a vector field.

b) Let X,Y,Z be smooth vector fields on a manifold M . Verify that their commutator satisfies the Jacobi
identity:

[[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0.

c) Let Y(1), . . . , Y(n) be smooth vector fields on an n-dimensional manifold M such that at each point p ∈ M
they form a basis of the tangent space TpM . Then, at each point, we may expand each commutator [Y(α), Y(β)]
in this basis, thereby defining the functions Cγ

αβ = −Cγ
βα by

[Y(α), Y(β)] = Cγ
αβY(γ).

Use the Jacobi identity to derive an equation satisfied by Cγ
αβ. (This equation is a useful algebraic relation

if the Cγ
αβ are constants, which will be the case if Y(1), . . . , Y(n) are left (or right) invariant vector fields on

a Lie group.)

a) First, linearity:
v(w(f + g)) = v(w(f) + w(g)) = vw(f) + vw(g),

similarly,
w(v(f + g)) = wv(f) + wv(g),

so that
[v, w](f + g) = (vw − wv)(f) + (vw − wv)(g) = [v, w](f) + [v, w](g).

And for Leibnitz we have

v(w(fg)) = v(fw(g) + gw(f))

= v(f)w(f) + fv(w(g)) + v(g)w(f) + gv(w(f)),

likewise

w(v(fg)) = w(fv(g) + gv(f))

= w(f)v(f) + fw(v(g)) + w(g)v(f) + gw(v(f)).

when put together the v(f)w(f) and like terms cancel, giving

[v, w](fg) = fv(w(g)) − fw(v(g)) + gv(w(f)) − gw(v(f))

= f [v, w](g) + g[v, w](f).
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b) Consider the first term

[[x, y], z] = [xy − yx, z]

= (xy − yx)z − z(xy − yx)

= xyz − yxz − (zxy − zyx).

It’s then easy to see that writing all the terms out they will cancel pairwise.

c) That the commutator can be written as such just says that since the commutator is vector, it can be written
out as a linear combination of basis vectors and the combination you get depends on the basis vectors you’re
commuting. Taking a third basis vector Yγ we get

[[Y(α), Y(β)], Y(γ)] = [Cδ
αβY(δ), Y(γ)]

= Cδ
αβ [Y(δ), Y(γ)]

= Cδ
αβC

σ
δγY(σ).

The cyclic sum over (α, β, γ) then gives

Cδ
αβC

σ
δγ + Cδ

βγC
σ
δα + Cδ

γαC
σ
δβ = 0.

4. a) Show that in any coordinate basis, the components of the commutator of two vector fields v, w are
given by

[v, w]µ = vν ∂ w
µ

∂ xν
− wν ∂ v

µ

∂ xν
.

b) Let Y(1), . . . , Y(n) be as in problem 3(c). Let Y (1), . . . , Y (n) be the dual basis. Show that the components

Y
(γ)
µ of Y (γ) in any coordinate basis satisfy

∂ Y
(γ)
µ

∂ xν
−
∂ Y

(γ)
ν

∂ xµ
= Cγ

αβY
(α)
µ Y (β)

ν .

a) We have

[v, w](f) = vν ∂

∂ xν

(

wµ ∂ f

∂ xµ

)

− wν ∂

∂ xν

(

vµ ∂ f

∂ xµ

)

= vνwµ ∂2 f

∂ xν ∂ xµ
+ vν ∂ w

µ

∂ xν

∂ f

∂ xµ
+ · · ·

+ wνvµ ∂2 f

∂ xν ∂ xµ
+ wν ∂ v

µ

∂ xν

∂ f

∂ xµ

=

(

vν ∂ w
µ

∂ xν
− wν ∂ v

µ

∂ xν

)

∂ f

∂ xµ

= [v, w]µ
∂

∂ xµ
(f)

b) Since the commutator is a vector field, let it act on a dual basis vector Y (σ). On the one hand we get

Cγ
αβY(γ)(Y

(σ)) = Cσ
αβ

by definition of the dual. On the other hand we get

[Y(α), Y(β)]Y
(σ) =

(

Y ν
(α)

∂ Y µ
(β)

∂ xν
− Y ν

(β)

∂ Y ν
(α)

∂ xν

)

∂

∂ xµ
(Y (σ)

ρ dxρ)

= Y ν
(α)

∂ Y µ
(β)

∂ xν
Y (σ)

µ − Y ν
(β)

∂ Y ν
(α)

∂ xν
Y (σ)

µ

Cσ
αβ = Y ν

(α)Y
µ
(β)

∂ Y
(σ)
µ

∂ xν
− Y ν

(β)Y
ν
(α)

∂ Y
(σ)
µ

∂ xν
,

where in line three we use ∂ν(Y µ
(β)Y

(σ)
µ ) = ∂ν δ

σ
β = 0. The result follows by multiplying both sides by

Y
(α)
γ Y

(β)
ρ and contracting.
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5. Let Y(1), . . . , Y(n) be smooth vector fields on an n-dimensional manifold M which form a basis of TpM
for each p ∈M . Suppose that [Y(α), Y(β)] = 0 for all α, β. Prove that in a neighborhood of each p ∈M there

exists coordinate y1, . . . , yn such that Y(1), . . . , Y(n) are the coordinate vector fields, Y(µ) = ∂
∂ yµ .

First select an arbitrary chart ψ about p with coordinates xµ. We wish to construct coordinates yµ with
the indicated properties. We can create a differential relation between y and x by taking the differential of
the functions yj , which is then

dyj =
∂ yj

∂ xi
dxi.

Now, if Y(µ) = ∂
∂ yµ , then the dual satisfies Y (µ) = dyµ, hence the Jacobian matrix in the above equation

expresses the components of the dual basis vectors in the dxi basis, i.e.

dyj = Y (j) = Y
(j)
i dxi,

or, comparing the two equations,

Y
(j)
i =

∂ yj

∂ xi

Now, for each j we have an equation of the form

∂ f

∂ xµ
= Fµ,

with the necessary integrability condition (regarding f and F as differential forms)

d2f = dF =
∂ Fµ

∂ xν
−
∂ Fν

∂ xµ
= 0,

which is also sufficient when the first cohomology group H1 vanishes. Whatever the domain of the chart we
may restrict to an open star-shaped subset where this condition holds, hence these equations have solutions
when that condition is met. By substituting in Y (j) for F we obtain the differential equation from the
previous problem. Since the Y ’s commute, C ≡ 0, and the integrability condition is met.

6. a) Verify that the dual vectors {vµ} defined by equation (2.3.1) constitute a basis of V ∗.

b) Let e1, . . . , en be a basis of V and e1, . . . en be its dual basis. Let w ∈ V and ω ∈ V ∗. Show that

w = eα(w)eα

ω = ω(eα)eα.

c) Prove that the operation of contraction, equation (2.3.2), is independent of the choice of basis.

a) Let v ∈ V and let ei be a basis of V and ej be defined by ej(ei) = δj
i . Let f = fje

j be a dual vector, then

fje
j(viei) = fjv

iej(ei) = fjv
j ,

which is zero for arbitrary v only if fj = 0, hence the ej are linearly independent. On the other hand, for an
arbitrary dual f we have

f(v) = f(viei) = vif(ei) = fi

so, it is determined by it’s action on the n basis vectors of V . Then we can write f = fje
j , since fje

j(ei) =

fjδ
j
i = fi, and the ej span V ∗.

b) We have w = wiei and ej(w) = ej(wiej) = wj . The second equation comes out similarly.

c) It is sufficient to look at a (1,1) tensor. Then we have for any isomorphism M

CT = T (ej , ej)

= T (M j
ae

a, eb(M
−1)b

j)

= M j
a(M−1)b

jT (ea, eb)

= δb
aT (ea, eb)

= T (ea, ea)

= CT
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7. Let V be an n-dimensional vector space and let g be a metric on V .

a) Show that one always can find an orthonormal basis v(1), . . . , v(n) of V , i.e, a basis such that g(v(α), v(β)) =
±δαβ.

b) Show that the signature of g is independent of the choice of orthonormal basis.

a) Suppose n = 1, then by non-degeneracy there is a vector v such that g(v, v) = l 6= 0, then the vector
v′ = v/

√

|l| satisfies g(v′, v′) = ±1. Now suppose the condition holds for n − 1. Choose a vector v ∈ V .
It may happen that v is null, g(v, v) = 0. We cannot choose the orthogonal complement of v because the
induced metric would be degenerate. By non-degeneracyof V , there must be at least one other vector w such
that g(v, w) 6= 0. If w is not null use w, otherwise use v‘ = v + w, then

g(v′, v′) = g(v + w, v + w)

= g(v, v) + 2g(v, w) + g(w,w)

= 2g(v, w).

Normalize v′ and then consider the orthogonal complement v′⊥ of v′. We claim the induced metric g′ = g|v′⊥

is non-degenerate. If v ∈ v′⊥ satisfies g′(v, w) = 0 for all w ∈ v′⊥, then g(v, v′) = 0 by definition of
orthogonal complement, but then g is degenerate. Let the dimension of v′⊥ be m. By induction we have
an orthonormal basis {ei}. We need to show that {ei, v

′} form a basis of V . First we need to show
that v′ is linearly independent of the {ei}, but this follows from the definition of orthogonal complement.
Finally, take a vector v and remove its projection onto v′, that is let w = v − ||v′||g(v, v′)v′. Then we have
g(w, v′) = g(v, v′) − ||v′||2g(v, v′) = 0, and w is in v′⊥, hence these elements span V .

b) Let {ea} be a basis as in a) so that g(ea, eb) = ±δab and let M be an orthonormal transformation. Then

g(M r
a er,M

s
b es) = M r

a M s
b g(er, es)

= ±δrsM
r

a M s
b

= ±δab,

where the last line follows by definition of orthonormal transformation (i.e. the matrix is orthogonal, hence
the norm of the row vectors is one).

8. a) The metric of flat, three-dimensional Euclidean space is

ds2 = dx2 + dy2 + dz2.

Show that the metric components gµν in spherical polar coordinates r, θ, φ defined by

r = (x2 + y2 + z2)1/2

cos θ = z/r

tanφ = y/x

is given by
ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

b) The spacetime metric of special relativity is

ds2 = −dt2 + dx2 + dy2 + dz2.

Find the components, gµν and gµν , of the metric and inverse metric in “rotating coordinates” defined by

t′ = t

x′ = (x2 + y2)1/2 cos(φ− ωt)

y′ = (x2 + y2)1/2 sin(φ− ωt)

z′ = z,

where tanφ = y/x
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a) The metric is determined by the transformation rule

g′αβ =
∂ xµ

∂ x′α
∂ xν

∂ x′β
gµν .

The derivatives determine the inverse Jacobian matrix:

∂ xµ

∂ x′α
= (J−1)µ

α

(since as a matrix the unprimed variables label rows and primed columns). So we have

g′αβ = (J−1)µ
αgµν(J−1)ν

β .

and can write the matrix equation
g′ = (J−1)tg(J−1).

The inverse transformation is easy to obtain. We know z = r cos θ. We then have

y = x tanφ

y2 = x2(sec2 φ− 1)

y2 + x2 = x2 sec2 φ

r2 − z2 = x2 sec2 φ

r2(1 − cos2 θ) = x2 sec2 φ

r2 sin2 θ = x2 sec2 φ,

which gives x = r cosφ sin θ and y = r sinφ sin θ.

It is straightforward to calculate the partial derivatives to obtain

J−1 =





cosφ sin θ r cosφ sin θ −r sinφ sin θ
sinφ sin θ r sinφ cos θ r cosφ sin θ

cos θ −r sin θ 0



 .

Since g = I,we have

(J−1)(J−1)t =





1 0 0
0 r2 0
0 0 r2 sin2 θ



 ,

or
ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2.

b) We will first change the metric to stationary cylindrical coordinates. This is similar to the transformation
in part a) and gives the metric

ds2 = −dt2 + dr2 + r2dφ2 + dz2,

with inverse

−

(

∂

∂ t

)2

+

(

∂

∂ r

)2

+
1

r2

(

∂

∂ φ

)2

+

(

∂

∂ z

)2

The Jacobian is

J =









1 0 0 0
ωy x/r −y 0
−ωx y/r x 0

0 0 0 1









.

The inverse metric transforms as

g′αβ =
∂ x′α

∂ xµ

∂ x′β

∂ xν
gµν = Jα

µg
µνJβ

ν ,

or
(g−1)′ = J(g−1)J t,

which gives

(g−1)′ =









−1 −ωy ωx 0
−ωy 1 − ω2y2 ω2xy 0
ωx ω2xy 1 − ω2x2 0
0 0 0 1









.
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The metric itself can be obtain from inverting the 3 × 3 submatrix. The Jacobian determinant is r, and
det(g−1) = −r−2, so det(g−1)′ = −1 and we get (computing minors)

g =









−1 + ω2r2 −ωy ωx 0
−ωy 1 0 0
ωx 0 1 0
0 0 0 1









.

Chapter 3 Solutions
1. Let property (5) (the “torsion free” condition) be dropped from the definition of derivative operator ∇
in section 3.1

a) Show that there exists a tensor T c
ab (called the torsion tensor) such that for all smooth functions f , we

have (∇a∇b −∇b∇a)f = −T c
ab ∇cf .

b) Show that for any smooth vector fields X,Y we have

T c
abX

aY b = ∇XY
c −∇Y X

c − [X,Y ]c.

c) Given a metric, g, show that there exists a unique derivative operator ∇ with torsion T such that ∇g = 0.
Derive the analog of equation 3.1.29, expressing this derivative operator in terms of an ordinary derivative
∂ and T .

a) We note that (3.1.7): ∇aωb = ∇̃aωb − Cc
abωc is still valid with torsion, so setting ωb = ∇bf = ∇̃bf , we get

∇a∇b = ∇̃a∇̃bf − Cc
ab∇cf . Since ∇̃ is torsion free we get

(∇a∇b −∇b∇a)f = (∇̃a∇̃b − ∇̃b∇̃a)f − (Cc
ab − Cc

ba )∇cf

= −2Cc
[ab]∇cf,

Thus T is essentially the anti-symmetric part of C.

b) We compute

[v, w]f = va∇a(wb∇bf) − wa∇a(vb∇bf)

= vawb(∇a∇b −∇b∇af) + (va∇aw
c − wa∇av

c)∇f

= −T c
ab v

awb∇cf + (va∇aw
c − wa∇av

c)∇cf,

or, dropping f and basis vector ∇c = ∂c, [v, w]c = −T c
ab v

awb + (va∇aw
c − wa∇av

c).

c) The condition ∇g = 0 becomes, again

∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd = ∇̃agbc − Ccab − Cbac.

If we add the permutation (ab) and subtract the permutation (cab) as before we get

∇̃agbc + ∇̃bgac − ∇̃cgab = Tbac + Tabc + 2Cc(ab),

so that we nay solve for the symmetric part of C given the antisymmetric part, the torsion T . Thus we have

Cc(ab) =
1

2
(∂a gbc + ∂b gac − ∂c gab) −

1

2
(Tbac + Tabc) ,

or since Cabc = Cc(ab) + Cc[ab] = Cc(ab) + Tcab/2, we get

Cabc =
1

2
(∂a gbc + ∂b gac − ∂c gab) −

1

2
(Tbac + Tabc − Tcab) .

2. Let M be a manifold with metric g and associated derivative operator ∇. A solution of the equation
∇a∇aα = 0 is called a harmonic function. In the case where M is 2-dimensional, let α be harmonic and let
ǫab be an antisymmetric tensor field satisfying ǫabǫ

ab = 2(−1)s, where s is the number of minuses occurring
in the signature of the metric. Consider the equation ∇bβ = ǫab∇

bα.

a) Show that the integrability conditions for this equation are satisfied, and thus, locally, there exists a solution,
β. Show that β also is harmonic.
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b) By choosing α and β as coordinates, show that the metric takes the form

ds2 = ±Ω(α, β)
[

dα2 + (−1)sdβ2
]

.

a) Since ǫabǫ
ab is a constant, we have ∇cǫabǫ

ab = 0, but we can also write

∇eǫabǫ
ab = ǫab∇eǫ

ab + ǫab∇eǫab = 2ǫab∇eǫab,

where we use ∇g = 0. This then requires that ∇eǫac = 0. Since β = dα, the integrability condition is again
d2α = dβ = 0, which is (∇b∇a −∇a∇b)β = 0. We have

(∇b∇a −∇a∇b)β = ∇a(ǫbc∇
cα) −∇b(ǫac∇

cα)

= (ǫbc∇a∇
c − ǫac∇b∇

c)α.

Now we can write ǫbc∇
c as the covector

(

0 ǫ
−ǫ 0

)(

∇1

∇2

)

= ǫ
(

∇2,−∇1
)

,

and then consider (ǫbc∇
c)∇a as an outer product

ǫ
(

∇2,−∇1
)

⊗

(

∇1

∇2

)

= ǫ

(

∇1∇
2 −∇1∇

1

∇2∇
2 −∇2∇

1

)

= M,

and the equation becomes

(M −M t)α = ǫ

(

0 −∇1∇
1 −∇2∇

2

∇2∇
2 + ∇1∇

1 0

)

α,

and both non-trivial terms vanish since α is harmonic and thus the integrability condition is satisfied.

Now we want to compute

gab∇a∇bβ = ∇a∇aβ = ∇aǫab∇
bα = ǫab∇

a∇bα,

where

ǫab∇
a∇b = ǫ

(

∇2,−∇1
)

(

∇1

∇2

)

= ǫ(∇2∇1 −∇1∇2),

which vanishes acting on α (no torsion), and so β is harmonic.

b) Given an arbitrary system of coordinates xµ, the inverse metric transforms as

g′αβ =
∂ x′α

∂ xµ

∂ x′β

∂ xν
gµν

= ∇µx
′α∇νx

′βgµν .

with x′1 = α and x′2 = β, we have

g′ = gµν

(

∇µα∇να (∇µα) ǫνσ∇
σα

(∇να) ǫµσ∇
σα (ǫµσ∇

σα) (ǫνρ∇
ρα)

)

=

(

gµν∇µα∇να ǫµν∇
µα∇να

ǫµν∇
µα∇να gµνǫµσǫνρ∇

σα∇ρα

)

.

Analogously to part a) the off-diagonal terms become

ǫµν∇
µα∇να = ǫ(∇2α∇1α−∇1α∇2α) = 0.

To evaluate the 22-component we will write it as gµνǫ σ
µ ǫ ρ

ν ∇σ∇ρ and consider the tensor contracted against
the derivatives. This can be written as the matrix equation

ǫtg−1ǫ,

with ǫ = ǫ β
α = gβσǫασ. So we have

ǫ β
α = gβσǫασ

= ǫ

(

0 1
−1 0

)(

g11 g12

g21 g22

)

= ǫ

(

g21 g22

−g11 −g12

)

,
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and thus

ǫtg−1ǫ = ǫ2
(

g21 g22

−g11 −g12

)(

g11 g12

g21 g22

)(

g21 −g11

g22 −g12

)

= ǫ2 det g

(

g21 g22

−g11 −g12

)(

0 1
−1 0

)

= ǫ2 det g

(

g11 g12

g21 g22

)

= ǫ2 det g(g−1),

so that the 22-element simplifies to (ǫ2 det g)gµν∇µα∇να, and the inverse metric becomes

(

∂

∂ s

)2

= (gµν∇µα∇να)

[

(

∂

∂ α

)2

+ ǫ2 det g

(

∂

∂ β

)2
]

.

Finally, since ǫtg−1ǫ = ǫ ρ
µ ǫµσ, we have

ǫµρǫ
µρ = gρσǫ

ρ
µ ǫµσ

= (ǫ2 det g)gρσg
ρσ

= ǫ2 det g tr(δρ
σ)

= 2ǫ2 det g,

since n = 2. Now this must equal 2(−1)s, so ǫ2 det g = (−1)s, and the metric becomes

(

∂

∂ s

)2

= ±Ω−1(α, β)

[

(

∂

∂ α

)2

+ (−1)s

(

∂

∂ β

)2
]

,

(where we set Ω−1 = ||∇µα||
2), or

ds2 = ±Ω(α, β)
[

dα2 + (−1)sdβ2
]

.

3. a) Show that Rabcd = Rcdab.

b) In n dimensions, the Riemann tensor has n4 components. However, on account of the symmetries (3.2.13),
(3.2.14), and (3.2.15), not all of these components are independent. Show that the number of independent
components is n2(n2 − 1)/12.

a) The first two identities imply that cyclic sum on the first three indices vanishes, Rabcd +Rbcad +Rcabd = 0.
If we then add four copies of this equation using the four cyclic permutations on all four indices then all
terms pairwise cancel except for four, leaving 2(Racdb +Rbdac) = 0, or Racbd = Rbdac.

b) Start with Rabcd with n4 unconstrained components, and consider the various identities as imposing con-
straints on these components. The first symmetry is ab = −ba, which imposes n constraints when a = b and
(

n
2

)

constraints when a 6= b, which gives a total of

(

n

2

)

+ n =
n!

2(n− 2)!
+ n =

n(n− 1)

2
+ n =

n(n+ 1)

2

constraints on the first two indices. At the same time it leaves n2 −n(n+ 1)/2 = n(n− 1)/2 terms in a, b to
be freely specified. Now, since there are choices of a, b for all c, d, that actually makes n2 ∗ n(n+ 1)/2 total
constraints.

Now the condition cd = −dc imposes n(n + 1)/2 constraints on c, d for all choices of a, b. But the first
two indices are already constraints and only n(n − 1)/2 are independent, so the total number of imposed
constraints is

n(n+ 1)

2

n(n− 1)

2
=

1

4
n2(n2 − 1).

The final symmetry is abc + bca + cab = 0. This gives
(

n
3

)

constraints for a 6= b 6= c for each choice of d.
No new constraints are introduced if any two or all three of a, b, c are equal, since these cases reduce to the
antisymmetry relations considered already. Thus the number of introduced constraints is

n

(

n

3

)

=
nn!

3!(n− 3)!
=

1

6
n2(n− 1)(n− 2).

9



The total number of constraints is then

1

2
n2(n2 + n) +

1

4
n2(n2 − 1) +

1

6
n2(n− 1)(n− 2)

=
1

12
n2(6n2 + 6n+ 3n2 − 3 + 2n2 − 6n+ 4)

=
1

12
n2(11n2 + 1).

Thus there remains

n4 −
1

12
n2(11n2 + 1) =

1

12
n2(n2 − 1)

independent components. So for n = 1 . . . 5 we get

n tot indep
1 1 0
2 16 1
3 81 6
4 256 20
5 625 50

so the savings by using the symmetries is tremendous. We note that when n = 1 there are no free curvature
terms: no 1-dimensional manifolds have curvature. When n = 2 there is only one free components, which is
essentially the Gaussian curvature of the surface.

4. a) Show that in two dimensions, the Riemann tensor takes the from Rabcd = Rga[cgd]b.

b) By similar arguments, show that in three dimensions the Weyl tensor vanishes identically; i.e., for n = 3,
equation (2.2.28) holds with Cabcd = 0.

a) Consider the tensor ξabcd = ga[cgd]b = (gacgbd − gadgcb)/2. We have

2ξbacd = gbcgda − gbdgca

= −(gacgdb − gadgcb)

= −2ξabcd,

so that ξ has the first Riemann symmetry. In the same way ξabdc = −ξabcd and ξcdab = ξabcd, so that ξ has
all the symmetries of the Riemann tensor. Thus from 3b) both tensors have one free component, and thus
must be proportional: Rabcd = αξabcd. We can establish α by contracting:

gbdgacRabcd = gbdgacξabcd

R = αgbdgac(gacgbd − gadgcb)/2

R = α((tr g)2 − tr g)/2

R = α,

since tr g = δa
a = 2. We note that 2K = R,where K is the Gaussian curvature of the surface. Further, by

taking only one contraction in the above we get

gbdRabcd = gbdξabcd

Rac = Rgbd(gacgbd − gadgcb)/2

Rac = R(gac tr g − gac)/2

Rac = Rgac/2

Rac = Kgac.

b) Write Rabcd = Cabcd + ξabcd. ξ has the same symmetries as R, and so we can write

Rabcd = α(a, b, c, d)ξabcd,

where α(a, b, c, d) is a collection of proportionality coefficients. Since C is traceless, we have

Rac = gbdξabcd = gbdα(a, b, c, d)ξabcd =
∑

b

α(a, b, c, b)ξ b
abc ,
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which can only hold if in fact α(a, b, c, b) = 1. This determines all the coefficients unless all four indices are
different, but this is impossible when n = 3, so all normalization constants are +1, so that Rabcd = ξabcd and
Cabcd = 0. This also demonstrates why when n > 3 no reductions are possible and we must consider the full
Riemann tensor.

5. a) Show that any curve whose tangent satisfies equation (3.3.2) can be reparametrized so that equation
(3.3.1) is satisfied.

b) Let t be an affine parameter of a geodesic γ. Show that all other affine parameters of γ take the form
at+ b, where a and b are constants.

a) In coordinates the generalized geodesic equation is

d2xµ

dt2
+ Γµ

νσ

dxσ

dt

dxν

dt
= α

dxµ

dt
.

Introduce a new parameter s = s(t) so that d/dt = (ds/dt)d/ds. Then

d

dt

dxµ

dt
=

d

dt

(

ds

dt

dxµ

ds

)

=

(

ds

dt

)2
d2xµ

ds2
+
dxµ

ds

d

dt

(

ds

dt

)

.

Now we rewrite the geodesic equation as

(

ds

dt

)2
d2xµ

ds2
+

(

ds

dt

)2

Γµ
νσ

dxσ

ds

dxν

ds
=
dxµ

ds

(

α
ds

dt
−
d

dt

(

ds

dt

))

,

so that to make the r.h.s zero we need to solve the equation(setting ds/dt = λ)

αλ =
dλ

dt
→ αdt =

dλ

λ

which integrates to
λ = λ0e

α(t−t0).

b) Let s1 and s2 be affine parameters with λi = dsi/dt in terms of some arbitrary parameter t. From part a)
we have

ds1
ds2

=
λ1

λ2
=

(λ1)0
(λ2)0

= const.

Thus ds1/ds2 = const and s1 = as2 + b, for constants a, b.

6. The metric of Euclidean R
3 in spherical coordinates is ds2 = dr2 + r2(dθ2 + sin2 θdφ2).

a) Calculate the Christoffel components Γσ
µν in this coordinate system.

b) Write down the components of the geodesic equation in this coordinate system and verify that the solutions
correspond to straight lines in Cartesian coordinates.

a) There are only three non-trivial derivatives of the metric tensor:

∂ gθθ

∂ r
= 2r,

∂ gφφ

∂ r
= 2r sin2 θ,

∂ gφφ

∂ θ
= 2r2 sin θ cos θ.

Since the metric is diagonal the components of the inverse are the inverse of the components. We will
consider the six different combinations for the bottom indices, which gives

2Γλ
rθ = gλσ (∂r gθσ + ∂θ grσ − ∂σ grθ) = gλθ ∂r gθθ

2Γλ
rr = gλσ (2 ∂r grσ − ∂σ grr) = 0

2Γλ
θθ = gλσ (2 ∂θ gθσ − ∂σ gθθ) = −gλr ∂r gθθ

2Γλ
θφ = gλσ (∂θ gφσ + ∂φ gθσ − ∂σ gθφ) = gλφ ∂θ gφφ

2Γλ
φφ = gλσ (2 ∂φ gφσ − ∂σ gφφ) = −gλr ∂r gφφ − gλθ ∂θ gφφ

2Γλ
rφ = gλσ (∂r gφσ + ∂φ grσ − ∂σ grφ) = gλφ ∂r gφφ,
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and the non-zero components come out to be

Γθ
rθ = gθθ ∂r gθθ/2 =

1

r
Γr

θθ = −grr ∂r gθθ/2 = −r

Γφ
θφ = gφφ ∂θ gφφ/2 = cot θ

Γr
φφ = −grr ∂r gφφ/2 = −r sin2 θ

Γθ
φφ = −gθθ ∂θ gφφ/2 = − sin θ cos θ

Γφ
rφ = gφφ ∂r gφφ/2 =

1

r

b) If we write dxµ/dt = ẋµ = (vr, vθ, vφ) we have

0 = v̇r + Γr
θθv

θvθ + Γr
φφv

φvφ = v̇r − rvθvθ − r sin2 θvφvφ

0 = v̇θ + 2Γθ
rθv

rvθ + Γθ
φφv

φvφ = v̇θ + 2
rv

rvθ − sin θ cos θvφvφ

0 = v̇φ + 2Γφ
θφv

θvφ + 2Γφ
rφv

rvφ = v̇φ + 2 cot θvθvφ + 2
rv

rvφ

Consider x = r cosφ sin θ. We have

ẋ = ṙ cosφ sin θ − rφ̇ sinφ sin θ + rθ̇ cosφ cos θ,

and similarly,

ẍ = r̈ cosφ sin θ − 2ṙφ̇ sinφ sin θ + 2ṙθ̇ cosφ cos θ

−rφ̈ sinφ sin θ − rφ̇2 cosφ sin θ − 2rφ̇θ̇ sinφ cos θ

+rθ̈ cosφ cos θ − rθ̇2 cosφ sin θ.

If we then substitute in for r̈ = v̇r, etc. all the terms cancel and ẍ = 0. The other axis are worked out
similarly. (Is there a better way to do this?)

7. As shown in problem 2, an arbitrary Lorentz metric on a two-dimensional manifold locally always can
be put in the form ds2 = Ω2(x, t)[−dt2 + dx2]. Calculate the Riemann curvature tensor of this metric (a) by
the coordinate basis methods of section 3.4a and (b) by the tetrad methods of section 3.4b.

a) We know that when n = 2 there is only one free component of R which we take to be R1212. To calculate
this we need only R 2

121 g22, since g is diagonal. Thus we need

R 2
121 = ∂2 Γ2

11 − ∂1 Γ2
21 + Γe

11Γ
2
e2 − Γe

21Γ
2
e1.

Now we note that gab = Ω2ηab, so that

∂c gab = 2Ωηab ∂c Ω

=
2

Ω
gab ∂c Ω

= 2gab ∂c ln Ω.

Likewise gab = Ω−2ηab and ∂c g
ab = −2gab ∂c ln Ω. Since the metric is diagonal we have g11g

11 = g22g
22 = 1.

Moreover, g22g11 = −1. We compute the Christoffel symbols using these properties to get

2Γ1
11 = g1r (2 ∂1 g1r − ∂r g11) = g11 ∂1 g11 = 2 ∂1 ln Ω

2Γ1
12 = g1r (∂1 g2r + ∂2 g1r − ∂r g12) = g11 ∂2 g11 = 2 ∂2 ln Ω

2Γ1
22 = g1r (2 ∂2 g2r − ∂r g22) = −g11 ∂1 g22 = 2 ∂1 ln Ω

2Γ2
11 = g2r (2 ∂1 g1r − ∂r g11) = −g22 ∂2 g11 = 2 ∂2 ln Ω

2Γ2
12 = g2r (∂1 g2r + ∂2 g1r − ∂r g12) = g22 ∂1 g22 = 2 ∂1 ln Ω

2Γ2
22 = g2r (2 ∂2 g2r − ∂r g22) = g22 ∂2 g22 = 2 ∂2 ln Ω.

Summarizing, we have

Γ1
11 = Γ1

22 = Γ2
12 = ∂1 ln Ω

Γ1
12 = Γ2

11 = Γ2
22 = ∂2 ln Ω.

The first term in R 2
121 becomes

∂2 Γ2
11 = (∂2)

2 lnΩ.
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The second term becomes
− ∂1 Γ2

21 = −(∂1)
2 ln Ω.

The third term becomes
Γ1

11Γ
2
12 + Γ2

11Γ
2
22 = (∂1 ln Ω)2 + (∂2 ln Ω)2.

The final term is
−Γ1

21Γ
2
11 − Γ2

21Γ
2
21 = −(∂2 ln Ω)2 − (∂1 ln Ω)2,

which will cancel the third term. All together, we get

R 2
121 =

[

−(∂1)
2 + (∂2)

2
]

ln Ω

= ηµν ∂µ ∂ν ln Ω

= �
2 ln Ω.

Finally, lowering the index with g22 = Ω2 gives

R1212 = Ω2
�

2 ln Ω.

b) Next we calculate using the tetrad method. The only non-trivial connection one-forms are

−ω121 = ω112

−ω221 = ω212.

We can construct an orthonormal basis by

e1 =
1

Ω

∂

∂ t

e2 =
1

Ω

∂

∂ x
,

since g(ei, ej) = Ω2ηab(ei)
a(ej)

b = Ω2ηab(Ω
−1δa

i )(Ω−1δb
j) = ηij . The components in the coordinate basis are

(e1)
i = Ω−1(1, 0)

(e2)
i = Ω−1(0, 1)

(e1)i = Ω(−1, 0)

(e2)i = Ω(0, 1)

This simplifies equation (3.4.21) for Riemann to

R(1212) = ∇e1
ω212 −∇e2

ω112 + ω2
112 − ω2

212,

where the ω’s here are ωσµν = (eσ)aωaµν , and these latter components are determined by equation (3.4.25)

∂a(eσ)b − ∂b(eσ)a = ηµν((eµ)aωbσν − (eµ)bωaσν).

Due to the anti-symmetry we need only calculate for a, b = 1, 2 and σ = 1, 2:

∂1(e1)2 − ∂2(e1)1 = ηµν((eµ)1ω21ν − (eµ)2ω11ν)

∂2 Ω = −Ωω112

ω112 = − ∂2 ln Ω,

and

∂1(e2)2 − ∂2(e2)1 = ηµν((eµ)1ω22ν − (eµ)2ω12ν)

∂1 Ω = Ωω221

ω212 = − ∂1 ln Ω.

The ω’s in Riemann are then related to the above by

ω212 = (e2)
2ω212 = −Ω−1 ∂1 ln Ω

ω112 = (e1)
1ω112 = −Ω−1 ∂2 ln Ω.
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Now we can calculate the derivative terms in Riemann:

∇e1
ω212 = (e1)

a ∂a(−Ω−1 ∂1 ln Ω)

= −Ω−1 ∂1(Ω
−1 ∂1 ln Ω)

= −Ω−1
(

−Ω−2 ∂1 Ω ∂1 ln Ω + Ω−1(∂1)
2 ln Ω

)

= Ω−2((∂1 ln Ω)2 − (∂1)
2 ln Ω)

and similarly

−∇e2
ω112 = −(e2)

a ∂a(−Ω−1 ∂2 ln Ω)

= Ω−1 ∂2(Ω
−1 ∂2 ln Ω)

= Ω−1
(

−Ω−2 ∂2 Ω ∂2 ln Ω + Ω−1(∂2)
2 ln Ω

)

= −Ω−2((∂2 lnΩ)2 − (∂2)
2 ln Ω).

The final two terms are

ω2
112 = Ω−2(∂2 ln Ω)2

−ω2
212 = −Ω−2(∂1 ln Ω)2.

These two terms will cancel the corresponding terms in the derivative terms, leaving

R(1212) = Ω−2
[

−(∂1)
2 + (∂2)

2
]

ln Ω

= Ω−2
� ln Ω.

Finally, as a sanity check, the frame and coordinate versions are related through the tetrad by

R(abcd) = Rµνσρ(ea)µ(eb)
ν(ec)

σ(ed)
ρ,

or

R(1212) = R1212(e1)
1(e2)

2(e1)
1(e2)

2

= Ω2
� ln Ω(Ω−4)

= Ω−2
� ln Ω.

8. Using the antisymmetry of ωaµν in µ and ν, equation (3.4.15), show that

ωλµν = 3ω[λµν] − 2ω[µν]λ.

Use this formula together with equation (3.4.23) to solve for ωλµν in terms of commutators (or antisym-
metrized derivatives) of the orthonormal basis vectors.

Due to the anti-symmetry in the last two indices, the full anti-symmetrization reduces to a double cyclic
sum:

3ω[λµν] =
1

2
(ωλµν − ωλνµ + ωµνλ − ωµλν + ωνλµ − ωνµλ)

= ωλµν + ωµνλ + ωνλµ.

The second term is
−2ω[µν]λ = −ωµνλ + ωνµλ,

which cancels the last two terms, leaving the first, which is the identity. Let Σσµν ≡ (eσ)a[eµ, eν ]a = 2ω[µ|σ|ν]

from equation (3.4.23). By anti-symmetrizing over all indices we get

1

2
Σ[σµν] = ω[σµν].

Now, we can write

3ω[σµν] = ωσ[µν] + ω[σµ]ν + ω[σ|µ|ν]

= ωσµν + ω[σµ]ν + ω[σ|µ|ν].

Comparing this against the equation from the first part of the problem we see that

−3ω[µσ]ν = ωµ|σ|ν] =
1

2
Σσµν ,

so that

ωµσν = 3ω[µσν] − 2ω[µσ]ν

=
3

2
Σ[µσν] −

1

3
Σµσν .
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