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Chapter 2 Solutions
1. a) Show that the overlap functions f* o (fji)*1 are C*°, thus completing the demonstration given in
section 2.1 that S? is a manifold.

b) Show by explicit construction that two coordinate systems (as opposed to the siz used in the text) suffice to
cover S?. (It is impossible to cover S? with a single chart, as follows from the fact that S? is compact, but
very open subset of R? is noncompact.)

a) The maps are defined as acting on the standard embedding of the sphere into R3. fii is a projection of
upper (lower) hemisphere into the plane, for example

fy (@t 2%, 2%) = (aF,2),

and the others are similar. The inverse map stretches the plane up or down into the corresponding hemi-
sphere,

()7 o) = W=V = ()2 + (59)2), 97),
and so on. The overlap map then projects out two of these coordinates, so up to exchanging coordinates it
is either of the two maps

wWhv?) —~ W)
Why?) = L EVI= ()2 + (12)2),

both of which are C*° in their domain of definition, (y')? + (y%)? < 1.

b) Construct a chart by drawing a line from the north pole N through any given point p # N on the sphere.
The point where this line hits the plane 22 = 0 is the image of p under the chart. This map is defined for all
points except N and is called stereographic projection from N. A similar chart defined at S (or any other
chart about S) then together with the first form an atlas for S?. An explicit form of the map can be found
geometrically. The line through p and N (thought of as vector in R?) is (with N = (0,0, 1))

p+ilp—N)=(t(1+p") t(1+p°), t(1+p*) —1).

Solving for when 22 = 0 we get

which then gives

The inverse maps are found similarly by starting with a point (y!,y?) in the plane, constructing the line
N + t(N — y) through N and y and finding where this hits the sphere:

L=le(t)]” = (y')*? + (y*)*¢* + (t+ 1)%,
which has solution L
b= T
and gives the mapping
(2y',2% [y* = 1).
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2. Prove that any smooth function F : R™ — R can be written in the form equation (2.2.2).

Start with the fundamental theorem of calculus
F(x) - F(a) = / F'(s)ds,

and make the substitution s = ¢(x — a) + a, which linearly rescales the interval [a,z] to [0,1]. Then
ds = dt(x — a) and we get

F(x)—F(a) = (v — a)/o F'(t(x — a) + a)dt,

which is the result for n = 1. If n > 1 then can write F : R — R as F = (F!,..., F"), where each
F?:R — R. Then apply the above to each F?. To check the derivative condition compute

1 1
gia - (x_a@;/o F'(t(x—a)+a)dt+/0 F/(te—a)+a)dy
= /1F’(a)dt
0
= F'(a),

which is the result.

3. a) Verify that the commutator, defined by equation (2.2.14), satisfies the linearity and Leibnitz properties,
and hence defines a vector field.

b) Let X,Y,Z be smooth vector fields on a manifold M. Verify that their commutator satisfies the Jacobi

identity:
HX7 Y],Z} + [[Y7 Z]vX} + [[ZvXLY] =0.

c) Let Y(1y,...,Y(n) be smooth vector fields on an n-dimensional manifold M such that at each point p € M
they form a basis of the tangent space T,M. Then, at each point, we may expand each commutator [Ya), Y 3)]
in this basis, thereby defining the functions C" 5 = —C"5, by

[Yia), Yig)] = C75Y()-

Use the Jacobi identity to derive an equation satisfied by C"Yaﬁ. (This equation is a useful algebraic relation
if the C"Yaﬁ are constants, which will be the case if Y1y, ..., Yy are left (or right) invariant vector fields on
a Lie group.)

a) First, linearity:
v(w(f +9)) = v(w(f) +wlg)) = vw(f) +vw(g),

similarly,

w(v(f +9)) = wo(f) + wo(g),

so that
[v, w](f + g) = (vw — wo)(f) + (vw — wo)(g) = [v, w](f) + [v,w](9).

And for Leibnitz we have

v(w(fg)) = ov(fw(g)+ gw(f))
= v(f)w(f) + fo(w(g)) +v(g)w(f) + gv(w(f)),

likewise

w(v(fg)) = w(fu(g)+gv(f))
= w(Ho(f) + fw(v(g) +wlg)v(f) + gw(v(f)).

when put together the v(f)w(f) and like terms cancel, giving

v, w](fg) = fo(w(g)) — fw(v(g)) + gv(w(f)) — gw(v(f))
= [flo,wl(g) + glv, w](f).



b) Consider the first term

[[x’y]’z] = [xy—yx,z]
(zy —yz)z — 2(xy — y)
= xyz —yxz — (zzy — 2yT).

It’s then easy to see that writing all the terms out they will cancel pairwise.

¢) That the commutator can be written as such just says that since the commutator is vector, it can be written
out as a linear combination of basis vectors and the combination you get depends on the basis vectors you’re
commuting. Taking a third basis vector Y, we get

Yy Yip)h Yl = [CasY(0)s Vi)
= Y1), Yiy)]

1) o

C°apC%, Y (o)

The cyclic sum over (¢, §,) then gives
5 5 5
C aﬁcaé‘,y + C ﬂ"}’ U(ga + C ,YQCU(;B == O

4. a) Show that in any coordinate basis, the components of the commutator of two vector fields v,w are
given by
L, Owh B wuav”.

oxv oxv

[v,w]* = v

b) Let Y(1),..., Y be as in problem 3(c). Let YD, Y™ be the dual basis. Show that the components

YH(W) of Y in any coordinate basis satisfy

aYM(V) oy
Y o y@y®),
o) 0zt aftu v

, 0 of , 0 of
wl(f) = v dxv (wuax“) Y o (Uﬂaxu)

R | LOwt A f
v oxv Ot v oxv Ozt

o f LOvh D f
oxv Ozt v oxv Ot
_ <V8w“ V@v“) of

v oxv v oxv ) Ozt

a) We have

+  wYot

= ()

b) Since the commutator is a vector field, let it act on a dual basis vector Y (@), On the one hand we get

[e4

gV (V) = €7

by definition of the dual. On the other hand we get

H v
Vo), Y)Y = (Y@ 8;2‘3) — Y 8;;?) %(Y;f’)dxp)
1 v
- K Fre v Gl
ay(f’) ay(f’)
Cas = Yo Yoy g Yo Yor g

where in line three we use 8V(Y(‘é)Y;U)) = 0,65 = 0. The result follows by multiplying both sides by
YW(O‘)YP(B ) and contracting.



5. Let Y1),...,Y(n) be smooth vector fields on an n-dimensional manifold M which form a basis of T), M
for each p € M. Suppose that [Y(4), Y] = 0 for all a, 3. Prove that in a neighborhood of each p € M there
exists coordinate y*,...,y" such that Yay,---,Ym) are the coordinate vector fields, Y,y = %

First select an arbitrary chart 1) about p with coordinates z#. We wish to construct coordinates y* with
the indicated properties. We can create a differential relation between y and x by taking the differential of
the functions y?, which is then

9yl
dy’ = ~dx’.
4 gt
Now, if Y{,) = 667, then the dual satisfies Y (*) = dy#, hence the Jacobian matrix in the above equation

expresses the components of the dual basis vectors in the dx? basis, i.e.
dy! = vy — Yi(j)dmi7

or, comparing the two equations,

N Oy
Y(]) =7
¢ oxt
Now, for each j we have an equation of the form
of
dan =~

with the necessary integrability condition (regarding f and F' as differential forms)

0F, 0F,
dzv  Odar

d*f =dF =

which is also sufficient when the first cohomology group H' vanishes. Whatever the domain of the chart we
may restrict to an open star-shaped subset where this condition holds, hence these equations have solutions
when that condition is met. By substituting in Y@) for F we obtain the differential equation from the
previous problem. Since the Y’s commute, C' = 0, and the integrability condition is met.

6. a) Verify that the dual vectors {v"'} defined by equation (2.5.1) constitute a basis of V*.

b) Letey,...,e, be a basis of V and e',...e" be its dual basis. Let w € V and w € V*. Show that

w = e“(w)ey

w = w(eq)e™.

¢) Prove that the operation of contraction, equation (2.3.2), is independent of the choice of basis.
a) Let v € V and let e; be a basis of V and e/ be defined by e’ (e;) = 67. Let f = f;e’ be a dual vector, then
fiel (v'e;) = fv'el (e;) = fiv7,

which is zero for arbitrary v only if f; = 0, hence the e/ are linearly independent. On the other hand, for an
arbitrary dual f we have

f) = fW'e;) = v'fles) = fi
so, it is determined by it’s action on the n basis vectors of V. Then we can write f = f;e’, since f;e’(e;) =
[30] = fi, and the e/ span V*.
b) We have w = w'e; and e/ (w) = e/ (w'e;) = w’. The second equation comes out similarly.

c¢) Tt is sufficient to look at a (1,1) tensor. Then we have for any isomorphism M

CT = T(,e))
= T(Mjaea,eb(M_l)bj)
= Mja(M_l)bjT<€a7€b)
= 80T (e% ep)
= T(e%e,)
= CT



a)

7. LetV be an n-dimensional vector space and let g be a metric on V.

a) Show that one always can find an orthonormal basis v(y), ..., V() of V, i.e, a basis such that g(v(ay,v(s)) =
£0a3-

b) Show that the signature of g is independent of the choice of orthonormal basis.

Suppose n = 1, then by non-degeneracy there is a vector v such that g(v,v) = | # 0, then the vector
v = v/m satisfies g(v’,v") = £1. Now suppose the condition holds for n — 1. Choose a vector v € V.
It may happen that v is null, g(v,v) = 0. We cannot choose the orthogonal complement of v because the
induced metric would be degenerate. By non-degeneracyof V', there must be at least one other vector w such
that g(v,w) # 0. If w is not null use w, otherwise use v* = v + w, then

g'v') = glv+wvtw)
= 9(v,0) +29(v, w) + g(w, w)
= 2g(v,w).

Normalize v" and then consider the orthogonal complement v'* of v'. We claim the induced metric g’ = g,/
is non-degenerate. If v € v'* satisfies ¢’(v,w) = 0 for all w € v'*, then g(v,v') = 0 by definition of
orthogonal complement, but then g is degenerate. Let the dimension of v'* be m. By induction we have
an orthonormal basis {e;}. We need to show that {e;,v'} form a basis of V. First we need to show
that v’ is linearly independent of the {e;}, but this follows from the definition of orthogonal complement.
Finally, take a vector v and remove its projection onto v’, that is let w = v — |[v’||g(v,v")v". Then we have
g(w,v") = g(v,v') — ||v'||>g(v,v") = 0, and w is in v'*, hence these elements span V.

Let {e,} be a basis as in a) so that g(e,, ep) = 044 and let M be an orthonormal transformation. Then
g(MareT‘vMbseS) = MaTMbsg(er»es)
= +6,,M,"M,*
= i(Saba

where the last line follows by definition of orthonormal transformation (i.e. the matrix is orthogonal, hence
the norm of the row vectors is one).

8. a) The metric of flat, three-dimensional Euclidean space is
ds? = da® + dy® + dz2.
Show that the metric components g, in spherical polar coordinates r,0,¢ defined by

(132+y2+22)1/2

T =
cos) = z/r
tang = y/x

is given by
ds?® = dr? + r2d6? + r?sin? 0d¢>.

b) The spacetime metric of special relativity is
ds? = —dt® + dz® + dy® + dz°.

Find the components, g, and g, of the metric and inverse metric in “rotating coordinates” defined by

o=t

o = (2® +yH)2cos(p — wt)
y = (@ +y%)?sin(¢—wi)
2 = 2z

where tan ¢ = y/x



a) The metric is determined by the transformation rule

, ozt dz”
Jap = g pra § B I
The derivatives determine the inverse Jacobian matrix:

ot

g~

D

(since as a matrix the unprimed variables label rows and primed columns). So we have
g:xﬂ = (Jil)#aguu(‘]il)uﬁ-
and can write the matrix equation
g =T )e(I7h.

The inverse transformation is easy to obtain. We know z = r cosf. We then have

y = xtan¢g
y? = x?(sec?p—1)
v +22 = a%sec’o
r2—22 = a%sec?¢
r?(1 —cos’f) = x?sec’¢
r?sin?0 = a%sec? o,

which gives x = rcos¢sinf and y = rsin ¢ sin 6.

It is straightforward to calculate the partial derivatives to obtain

cos¢psinf  rcos¢sinf —rsingsind

J = singsinf rsingcosf rcospsinf
cos —rsind 0
Since g = I,we have
1 0 0
JHI =0 » 0 :
0 0 7r2sin0

or
ds?® = dr? + r2d6? + r?sin? 0d¢>.

b) We will first change the metric to stationary cylindrical coordinates. This is similar to the transformation
in part a) and gives the metric
ds® = —dt® + dr® + r?d¢?® + d2?,

() (@) = @) ()

with inverse

The Jacobian is

1 0 0 0

g wy a/r —y O
| —wz y/r x 0O
0 0 0 1

The inverse metric transforms as

1af _ ax/a 8x/ﬁ

v o pv B
= a0z Y T T

or

which gives

-1 —wy wx 0
(gfl)’ _ —wy 1 —w?y? w2y 0
wx w2zy 1—w?2? 0
0 0 0 1



The metric itself can be obtain from inverting the 3 x 3 submatrix. The Jacobian determinant is r, and
det(g™!) = —r~2, so det(g~!)’ = —1 and we get (computing minors)

—1+w*? —wy wz 0

. —wy 1 0 O
9= w 0 1 0
0 0 0 1

Chapter 3 Solutions

1. Let property (5) (the “torsion free” condition) be dropped from the definition of derivative operator V
i section 3.1

a) Show that there exists a tensor T, (called the torsion tensor) such that for all smooth functions f, we
have (VoVy — Vi Vo) f = =T, V.f.

b) Show that for any smooth vector fields X,Y we have

T, XYV? =VxY® - VyX°—[X,Y]

¢) Given a metric, g, show that there exists a unique derivative operator V with torsion T' such that Vg = 0.
Derive the analog of equation 3.1.29, expressing this derivative operator in terms of an ordinary derivative
0andT.

a) We note that (3.1.7): V,w, = Vowp — C€ pwe is still valid with torsion, so setting wy, = V f = @bf, we get
VoV =V Vyf —C¢, Ve f. Since V is torsion free we get

(VaVo = VoVa)f = (VaVi = ViVa)f = (C = C%)Vef
- —QCC[ab] ch,
Thus T is essentially the anti-symmetric part of C.
b) We compute
[v,w]f = vV (w'Vuf) —w'Va(v*Vyf)
v w(VoVy — VoVaf) + 0V qw® — 0wV 0°)V f
= -T% VbV, f + (V*Vw® — W'V u) V. f,
or, dropping f and basis vector V. = 9., [v,w]® = —=T¢,, v*w® + (v*V,w® — wrV ,v°).
¢) The condition Vg = 0 becomes, again
vagbc = @agbc - Cdabgdc - Cdacgbd = @agbc - Ccab - Cbac~

If we add the permutation (ab) and subtract the permutation (cab) as before we get

?agbc + ﬁbgac - vcgab = Tbac + Tabc + 2Cc(ab)7

so that we nay solve for the symmetric part of C' given the antisymmetric part, the torsion 7. Thus we have

1 1
- (aa Gbve + 817 Gac — ac gab) s (Tbac + Tabc) 5

O =
c(ab) 2 2

or since Cype = Cc(ab) + Cc[ab] = Cc(ab) + Tcab/27 we get

1 1
C’abc =3 (aa Gbe + ab Gac — ac gab) - 5 (Tbac + Tabc - Tcab) .

2

2. Let M be a manifold with metric g and associated derivative operator V. A solution of the equation
VeV ,.a =0 is called a harmonic function. In the case where M is 2-dimensional, let o be harmonic and let
€ap be an antisymmetric tensor field satisfying e.pe® = 2(—1)°*, where s is the number of minuses occurring
in the signature of the metric. Consider the equation V3 = €4, VPar.

a) Show that the integrability conditions for this equation are satisfied, and thus, locally, there exists a solution,
3. Show that (8 also is harmonic.



2)

b) By choosing a and 3 as coordinates, show that the metric takes the form
ds* = £Q(a, B) [do® + (—1)°dB?] .

b

Since e.5€®? is a constant, we have V. €€ = 0, but we can also write

b b b b
Ve€ah€™ = €apVe€™ + €*°Ve€ap = 26’V €ap,

where we use Vg = 0. This then requires that V.e,. = 0. Since 8 = da, the integrability condition is again
d*a = dB = 0, which is (V,V, — V,V;)3 = 0. We have

(vaa — VaVb)ﬂ = Va(ebcvca) — Vb(eacvca)
= (eeVaVe — €V V9)a.

Now we can write ¢,V as the covector

(°5)(%)=cv-v,

and then consider (€,,V¢)V, as an outer product
\Y AVAAVER VAR v
2 ol 1) _ 1 1 _
€ (V2 v)®<v2> 6<V2v2 —vgvl) M,
and the equation becomes

_ 1 2
(M — M"Ya = e < 0 Viv VaV > Q,

VQVQ + V1V1 0

and both non-trivial terms vanish since « is harmonic and thus the integrability condition is satisfied.
Now we want to compute

9V VB = ViV, = Vi Vla = €, V*Va,
where
vl
v2

which vanishes acting on « (no torsion), and so § is harmonic.

€ VOVl =€ (V2 -V ( > =¢(VAV - VIV,

Given an arbitrary system of coordinates z*, the inverse metric transforms as
a3 - 8.%'0‘ 3x’ﬁ %
g - Jxn Qav
— vux/avyxlﬂg,ul/.
with /! = @ and 2/2 = /3, we have
g = g" VuaVya (Vuoz) €vo VI
(Vo) €y Vo (€46 Vo) (€,,VPa)

PVaV,a e VraVVa
e VFaVYa  g'e 06,V aVPa
Analogously to part a) the off-diagonal terms become
e Vi aV’a = e(VaVla — VaVia) = 0.
To evaluate the 22-component we will write it as g"”¢€,7€,”V,V, and consider the tensor contracted against
the derivatives. This can be written as the matrix equation

etgfle,

with € = eaﬁ = ¢%?¢.y. So we have

¢ B Bo

(03

I
Q
L)
Q
]



and thus

21 22 1,12
t —1 2 g g g g
€ € = €
g < _911 _912 ) ( 921 922 )
21 22
g g 0 1
= eQdetg< Zgt gt ) ( 1 0
1 12
= & detg( 921 922 )
g
= € detg(g_l),

so that the 22-element simplifies to (€2 det 9)g""'V ,,aV, o, and the inverse metric becomes
o\ d\°
— detg | =— .

(70) +etaeta(55)

e = Gor€ P
(€° det 9)gpog””
2 det g tr(6°)
2¢? det g,

a 2
<88> = (gl‘“jvuav]/a)

Finally, since e’g~'e = €,¢"?, we have

since n = 2. Now this must equal 2(—1)%, so €2det g = (—1)*, and the metric becomes

(aa) — 407 (. 9) [(;’Q) " (éfﬂ)] |

(where we set Q7! = ||V ,a|[?), or

ds* = £Q(a, B) [do® + (—1)°dB?] .

3. a) Show that Rabcd = Rcdab-

b) Inn dimensions, the Riemann tensor has n* components. However, on account of the symmetries (3.2.13),
(8.2.14), and (3.2.15), not all of these components are independent. Show that the number of independent
components is n*(n? —1)/12.

The first two identities imply that cyclic sum on the first three indices vanishes, Rypcq + Rpcad + Reapa = 0.
If we then add four copies of this equation using the four cyclic permutations on all four indices then all
terms pairwise cancel except for four, leaving 2(Rgcap + Rpdac) = 0, o Racbd = Rpdac-

Start with Rgpeq with n* unconstrained components, and consider the various identities as imposing con-
straints on these components. The first symmetry is ab = —ba, which imposes n constraints when ¢ = b and
(g) constraints when a # b, which gives a total of

n _nl _n(n—1) _n(n+1)
(2)”‘2@2)!”‘2*”‘2

constraints on the first two indices. At the same time it leaves n?> —n(n+1)/2 = n(n —1)/2 terms in a, b to
be freely specified. Now, since there are choices of a,b for all ¢, d, that actually makes n? x n(n + 1)/2 total
constraints.

Now the condition ¢d = —dc imposes n(n + 1)/2 constraints on ¢, d for all choices of a,b. But the first

two indices are already constraints and only n(n — 1)/2 are independent, so the total number of imposed
constraints is

nn+1)nn—-1) 1 ,

2 2 1"

(n? —1).

The final symmetry is abc + bca + cab = 0. This gives (}) constraints for a # b # ¢ for each choice of d.
No new constraints are introduced if any two or all three of a, b, ¢ are equal, since these cases reduce to the
antisymmetry relations considered already. Thus the number of introduced constraints is

n<§> - 3'(:;”1'3)' - %nQ(n ~1)(n—2).



The total number of constraints is then

1 1 1
—n?*(n? +n)+ ZRZ(HZ -1+ énz(n —1)(n—-2)

2
1
= ﬁn2(6n2 +6n+3n2 — 3+ 2n? — 6n +4)
1
= En2(11n2 +1).
Thus there remains 1 ]
4 2 2 2,2
— X124+ 1) = — —1
n 12n( n®+1) TR (n )

independent components. So for n =1...5 we get

n tot indep
1 1 0

2 16 1

3 81 6

4 256 20

5 625 50

so the savings by using the symmetries is tremendous. We note that when n = 1 there are no free curvature
terms: no 1-dimensional manifolds have curvature. When n = 2 there is only one free components, which is
essentially the Gaussian curvature of the surface.

4. a) Show that in two dimensions, the Riemann tensor takes the from Rapea = Rga[c9d)p-

b) By similar arguments, show that in three dimensions the Weyl tensor vanishes identically; i.e., for n = 3,
equation (2.2.28) holds with Cypeq = 0.

a) Consider the tensor {aped = Ja[cGdlp = (JacGbd — Jadgep)/2. We have

2§bacd = G9bvcYda — 9bdYca
= _(gacgdb - gadgcb)
= _2£abcd7
so that & has the first Riemann symmetry. In the same way £,p0c = —E&abed and Ecdgap = Eabed, S0 that & has

all the symmetries of the Riemann tensor. Thus from 3b) both tensors have one free component, and thus
must be proportional: Rgpcq = aéapeq- We can establish « by contracting:

"9 Rapea = "9 Cabea

R = ag"g"(Jacgbd — Gadgev)/2
R a((trg)® —trg)/2
R = q

since trg = 6% = 2. We note that 2K = R,where K is the Gaussian curvature of the surface. Further, by
taking only one contraction in the above we get

""Rapea = 9"%abed
Rae = RG"(acGbd — Gaagen)/2
Ric = R(Gactrg — gac)/2
Ric = Rgac/2
R,e = Kgqe.

b) Write Raped = Cabed + Eavea- € has the same symmetries as R, and so we can write

Rabcd = O‘(av b, ¢, d)gabcm

where «a(a, b, ¢,d) is a collection of proportionality coefficients. Since C' is traceless, we have

Rac - gbdfabcd = gbda(a’a b7 c, d)fade = Z a(a, ba c, b)fabcba
b

10



which can only hold if in fact a(a,b, c,b) = 1. This determines all the coefficients unless all four indices are
different, but this is impossible when n = 3, so all normalization constants are +1, so that Rupeq = Eapea and
Capbed = 0. This also demonstrates why when n > 3 no reductions are possible and we must consider the full
Riemann tensor.

5. a) Show that any curve whose tangent satisfies equation (3.3.2) can be reparametrized so that equation
(8.3.1) is satisfied.

b) Let t be an affine parameter of a geodesic y. Show that all other affine parameters of v take the form
at + b, where a and b are constants.

a) In coordinates the generalized geodesic equation is

A2 xH L dz? dx” dzt

R T TR T

Introduce a new parameter s = s(t) so that d/dt = (ds/dt)d/ds. Then

i dxt d (ds dx“)

dt dt dt \dt ds

_ (45 dar  dard (ds
- o\dt) ds® " ds dt \dt)’
Now we rewrite the geodesic equation as
ds\? d2z# (ds\®_, dz°dz¥ dzt [ ds d (ds
N + {5 Fﬂuoi =7\ = —\| )
dt ds? dt ds ds ds dt dt \ dt

so that to make the r.h.s zero we need to solve the equation(setting ds/dt = )

dA dA
a)\—a—)adt—j

which integrates to
A = Age(t=to),

b) Let s; and sg be affine parameters with A\; = ds;/dt in terms of some arbitrary parameter ¢. From part a)

we have
d81 - )\1 o ()\1)0

dsy o (Ao

Thus dsy/dsy = const and s; = ass + b, for constants a, b.

= const.

6. The metric of Euclidean R3 in spherical coordinates is ds* = dr? + r?(d6* + sin? 0dp?).

a) Calculate the Christoffel components I'? ., in this coordinate system.

v
b) Write down the components of the geodesic equation in this coordinate system and verify that the solutions
correspond to straight lines in Cartesian coordinates.

a) There are only three non-trivial derivatives of the metric tensor:

0 0 0
900 _ 2r, 29¢¢ _ 9 sin 0, 994

_ 2
ar ar EY = 2r“sinfcosf.

Since the metric is diagonal the components of the inverse are the inverse of the components. We will
consider the six different combinations for the bottom indices, which gives

QF)\TQ 9/\0 (87‘ 960 + 80 9ro — 00 gr0) = 9)‘0 ar goe

2F>\rr = gAU (2 Or Gro — aa grr) = 0

2%, = 9™ (209 965 — 0o gos) = —9"" 0, goo

My = 9 (00960 + 06 900 — Do 906) = 9™ Do 9o

My = 9 (204 9g0 — 0o 9po) = =g 9o — 9% 00 9o
2P)\T»¢ = 9/\0 (Or 9o +0p gro — 04 Grg) = g>‘¢ Or 9o
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b)

and the non-zero components come out to be

1
‘', = ¢%0,900/2 = -
[y = —g"0rgee/2 = -—r
F¢9¢ = gd)q5 Oy g¢¢/2 = cotf
Iy = =97 0rgee/2 = —rsin? 6
F9¢¢ = —¢"09gss/2 = —sinfcosb
1
I°, = 9°0,006/2 = -
If we write da#/dt = i* = (v",v%,v?) we have
0 = 0"+ Frgeveve + I, v%0® = 0" —rvf? — rsin? vPo?
0 = o+ 2I‘9T9vrve + I‘0¢¢v¢v¢ = o'+ %’UT’UQ — sin @ cos fvPv?®
0 = o2+ 2F¢9¢1}0U¢ + 2F¢T¢vrv¢ = 9?4+ 2cot v?v? + %vrv‘i’

Consider x = rcos ¢sin . We have
& =7 cos psinb — rosin dsinh + 76 cos ¢ cos b,
and similarly,
T = +cos¢sinf — 2fgf)sin¢sin9 + 2f9cos¢cos9

—ré sin ¢ sin @ — r¢? cos ¢psin f — 2r¢f sin ¢ cosb
+76 cos ¢ cos § — 162 cos ¢ sin 6.

If we then substitute in for # = 0", etc. all the terms cancel and & = 0. The other axis are worked out
similarly. (Is there a better way to do this?)

7. As shown in problem 2, an arbitrary Lorentz metric on a two-dimensional manifold locally always can
be put in the form ds®> = Q%(z,t)[—dt? + dz?]. Calculate the Riemann curvature tensor of this metric (a) by
the coordinate basis methods of section 3.4a and (b) by the tetrad methods of section 3.4b.

We know that when n = 2 there is only one free component of R which we take to be Ri212. To calculate
this we need only R;5,2g22, since g is diagonal. Thus we need

2 2 2 e 12 e 12
Rigy” = 0217 = 01T + T, 17 =T 174
Now we note that g, = anab, so that

ac Gab = 29770,17 ac Q

2
= “{Ya CQ
a9 b0

= 2¢a 0:.1In Q.

Likewise g% = Q721 and 9, g*® = —2¢® 0. In Q. Since the metric is diagonal we have g;1g'! = g22¢%2 = 1.
Moreover, g?2g;; = —1. We compute the Christoffel symbols using these properties to get

2I1111 = glr (201 g1r — Or g11) = 91131 g11 = 20:InQ
2F112 = g " (01 g2r + 02 917 —0rg12) = g 02 g11 = 207:InQ
2y, = ¢ (202 92y — Oy g22) = —¢g101gn = 20:1InQ
2I‘211 = g% (201 g1r — Or g11) = —¢20y911 = 20,1nQ
2%, = ¢* (01 92r + 02 g1r —0rg12) = ¢*201922 = 20:InQ
2%, = ¢* (202920 — Or g22) = ¢%205 0 = 205InQ.
Summarizing, we have
I‘111 = F122 = F212 = 01lnQ

rt,=r?%,=1%, d21n Q.

The first term in R;5,% becomes
02T2 = (02)?In Q.
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The second term becomes
— 0172, = —(01)*InQ.

The third term becomes
T2, + 12172, = (0:In Q)% + (92 In Q)%

The final term is
*F121F211 - 1ﬂ221F221 = —(021n 9)2 — (01l 9)27

which will cancel the third term. All together, we get

R1212 - [7(81)2 + (82)2] an
= 7 9,0,In0
0*InQ.

Finally, lowering the index with g = Q2 gives

R1212 = Q2D2 ln Q

Next we calculate using the tetrad method. The only non-trivial connection one-forms are

—Wi21 = Wi12
—Ww221 =  Wali2.
We can construct an orthonormal basis by
10
e = ==
! Qat
10
ey = ==,
2 Qox

(e1)" = Q7'(1,0)
(e2)" = Q71(0,1)
(e1); = Q(-1,0)
(e2)i = Q(0,1)

This simplifies equation (3.4.21) for Riemann to

2 2
R(1212) = Vw212 — Ve,wii2 + Wity — wipa,

where the w’s here are wyp, = (€5)*wWapuw, and these latter components are determined by equation (3.4.25)

aa(ea)b - ab(ea)a = nuy((eu)awbm/ - (eu)bwam/)~

Due to the anti-symmetry we need only calculate for a,b =1,2 and 0 = 1,2:

81(61)2 - 32(61)1 = U”V((eu)lwmy - (eu)2w11u)
020 = —Quwiro
wilz = —021n,
and
O1(e2)2 — 02(e2)1 = 0" ((ep)1wazy — (€p)2wian)
81 Q = Q(,dggl
w212 — — 81 In Q.

The w’s in Riemann are then related to the above by

w212 = (62)2w212 = —Q_l 81 an

witz = (e)'wio=-0"19,InQ.
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Now we can calculate the derivative terms in Riemann:
Ve,wore = (€1)0,(—Q710;1InQ)
= —01'9(Q'oInQ)
= -0 (-Q779,20:mQ+ Q71 (01)° InQ)
= Q72((0:InQ)? - (8:)*InQ)
and similarly
~Vewitza = —(e2)%0,(—271921In Q)
Q10,071 0,InQ)
= 0! (—Q_2 D2Q0;InQ + Q71 (0)*In Q)
= —0%3((021n0Q)* = (92)?In Q).

The final two terms are

Wiy = Q72%(021nN)?
—wh, = —07%(0;InQ)%.
These two terms will cancel the corresponding terms in the derivative terms, leaving
Raoizy = Q72 [=(01)° +(92)’| nQ
= Q?0hQ.

Finally, as a sanity check, the frame and coordinate versions are related through the tetrad by
R(abcd) = Ruuap(ea)“(eb)y(ec>o(ed)pa

or
Raziz)y = Rizia(er)'(e2)(e1) (e2)?

Q?OIn Q%)

Q20 Q.

8. Using the antisymmetry of wau, in p and v, equation (3.4.15), show that
Wapr = 3Waur] — 2W [

Use this formula together with equation (3.4.23) to solve for wxu, in terms of commutators (or antisym-
metrized derivatives) of the orthonormal basis vectors.

Due to the anti-symmetry in the last two indices, the full anti-symmetrization reduces to a double cyclic
sum:

1

gw[)\uu] = 5 (w)\uu — Wi + Wpvh — Wuv + Wuap — wV}l)\)

Wipy + Wy + Wyap-

The second term is

_2w[/tu])\ = —Wpp T Wop,
which cancels the last two terms, leaving the first, which is the identity. Let X5, = (es)aleu, €,]* = 2wjo]
from equation (3.4.23). By anti-symmetrizing over all indices we get

1
3 Slon] = Wiopw)-
Now, we can write

SWiopr] = Wolu] T Wouly T Wiolulv]
= Wour t Wioply + Wig|uly]-

Comparing this against the equation from the first part of the problem we see that

1
3oty = Wploly] = 5Bouw
so that
Wpov = 3Wiuov] — 2Wuoly
3 1

5 8luov] ~ 3 Vo
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