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Takens1 has shown that a dynamical system may be reconstructed from scalar data taken along some tra-
jectory of the system. A reconstruction is considered successful if it produces a system diffeomorphic to the
original. However, if the original dynamical system is symmetric, it is natural to search for reconstructions
that preserve this symmetry. These generally do not exist. We demonstrate that a differential reconstruction
of any nonlinear dynamical system preserves at most a two-fold symmetry.

I. INTRODUCTION

Symmetry is an important property enjoyed by many
equations describing physical phenomena. Common
examples include the Lorenz2, Burke and Shaw3,4,
Kremliovsky5, and Thomas6 dynamical systems. Each
system models a measurable physical dynamics, but a
typical experiment records only a single variable. Time
delay and differential embedding techniques can be used
to attempt the reconstruction of the entire original phase
space. We are interested in determining what constraints
the symmetry of a nonlinear dynamical system imposes
on this reconstruction process. Specifically, the questions
this paper addresses are the following: for a differential
embedding constructed from a single observation func-
tion, 1) is the reconstructed dynamics equivariant; 2) if
yes, under which group is it equivariant; and 3) under
which representation of that group?

In short, equivariance provides an extremely tight con-
straint on the embedding problem. Specifically, we shall
show that only two possibilities exist when attempting
to reconstruct an equivariant dynamics, either 1) the re-
construction has no symmetry; or 2) the reconstruction
is equivariant under the parity representation of Z2, the
cyclic group of order two. In other words, regardless
of the symmetry of the original system, the construction
possesses at most a two-fold symmetry. It most cases this
precludes the possibility of an actual embedding since the
loss of symmetry prevents the reconstruction from being
one-to-one. That is not to say that embeddings do not
exist; they just cannot preserve symmetry.

The organization of this paper is as follows. Sec. II
provides background material and motivation. Sec. III
reviews the relevant theory of group representations.
Sec. IV reviews the structure theory for equivariant dy-
namical systems, while Sec. V introduces a structure the-
ory for differential mappings (dynamical system recon-
structions). The structure of equivariant reconstructions
is worked out in Secs. VI and VII. Implications of this
theory for the embedding problem are given in Sec. VIII.
Finally, Sec. IX states our conclusions.

II. BACKGROUND

A dynamical system is a set of first order ordinary dif-
ferential equations or, equivalently, a smooth vector field
on a manifold. The vector field generates a flow ϕt(x)
which is the unique solution to the differential equations.
We are interested in autonomous dynamical systems on
Euclidean space Rn, which have the form ẋi = vi(x). We
regard the vector field v as a map v : Rn → R

n associat-
ing to each point x ∈ R

n the vector v(x).
A group G may act on R

n as a set of linear transforma-
tions. Such an action is through a representation Γ of G.
A dynamical system ẋ = v(x) is said to be symmetric or
equivariant under G if there exists a faithful representa-
tion Γ of G acting on R

n such that the following diagram
commutes for every g ∈ G

R
n v

−−−−→ R
n

Γ(g)





y





y

Γ(g)

R
n v

−−−−→ R
n.

(1)

This relation states the the vector field “looks the same”
when viewed from a point x as is does from any symme-
try related point Γ(g)(x). The representation is required
to be faithful to eliminate trivial equivariance, which is
simply invariance.
The Lorenz and Kremliovsky dynamical systems are

both equivariant under Z2, the cyclic group of order two.
The Lorenz system is given by the equations

ẋ = σ(y − x)

ẏ = Rx− y − xz

ż = −bz + xy,

(2)

which are equivariant under the transformation Rz(π) :
(x, y, z) 7→ (−x,−y, z), equivalent to a π rotation about
the z-axis. We say that the Lorenz system is rotationally
equivariant. The Kremliovsky system is given by the
equations

ẋ = −y − z

ẏ = x+ ay

ż = bx+ z(x2 − c),

(3)

which are equivariant under the transformation P :
(x, y, z) 7→ (−x,−y,−z), which is a spatial inversion.
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We say that the Kremliovsky system is parity equivari-
ant. The representations Rz(π) and P are inequivalent in
R

3. The two systems therefore possess distinct symme-
tries even though they are both equivariant under faithful
representations of the same group, Z2.

An observation function for a dynamical system is a
real-valued function f : Rn → R that measures some ob-
servable of the system. The values of an observation func-
tion are recorded along some trajectory of the system;
what one records is the composition f ◦ ϕt(x0) for some
initial condition x0 at various times t, typically evenly
spaced.
Given an observation function, a “differential map-

ping” of the dynamical system into R
m may be defined

by the formula

x 7→

(

f(x),
d

dt

∣

∣

∣

∣

0

f(ϕt(x)), . . . ,
dm−1

dtm−1

∣

∣

∣

∣

0

f(ϕt(x))

)

, (4)

where the notation indicates that derivatives are to be
evaluated at t = 0. A theorem of Takens1 states that
for a generic dynamical system (of dimension n) and
generic function f , this mapping is an embedding when
m = 2n+1. This mapping is called a differential or Tak-
ens embedding. While smaller values of m may provide
embeddings, Takens’ theorem does not guarantee this.
When an observation function is discretely sampled at

an interval ∆t that is sufficiently small, linear combi-
nations of k adjacent terms in the time series are good
approximations to the signal and its first k − 1 deriva-
tives. Thus differential embeddings can be approximated
by discretely sampled experimental data. In the sequel
we investigate the equivariant properties of dynamical
systems under differential mappings only.
As an example to motivate the present analysis, con-

sider the Lorenz system, Eq. (2) (for details, see7). The
coordinate function x and all of its derivatives transform
under the parity representation P of Z2. A differential
mapping of the Lorenz system using x as the observation
function results in the induced Lorenz system, which is
equivariant under P . The symmetries of the two attrac-
tors in R

3 are compared in Fig. 1. An important con-
sequence of this difference of symmetry is that this dif-
ferential mapping does not provide an embedding of the
entire Lorenz system into R

3 (though it does in higher
dimensions). We return to this point in Sec. VIII.

III. GROUP REPRESENTATIONS AND SCHUR’S

LEMMAS

The structure of equivariant dynamical systems and
their differential embeddings depends on the structure of
the underlying equivariance group, G. We will assume
that G is a finite group. Let Γ be a representation of
G acting on the linear space V . Then Γ is said to be
reducible if there exists a proper subspace U ⊂ V that is
invariant under Γ, that is Γ(g)(u) ∈ U for every u ∈ U .

(a)Lorenz, xy-projection. (b)Induced Lorenz,
xy-projection.

(c)Lorenz, xz-projection. (d)Induced Lorenz,
xz-projection.

FIG. 1. Projections of the Lorenz and induced Lorenz at-
tractors. The first row shows that both attractors possess
(x, y) → −(x, y) symmetry. The bottom row shows that
Lorenz has no z symmetry while the induced system has
(x, z) → −(x, z) symmetry.

If V has no proper invariant subspaces then Γ is said to
be irreducible.
A representation Γ is said to be fully reducible if when-

ever U is a proper invariant subspace, there exists a com-
plementary subspace which is also invariant. This means
that in the proper basis the matrices Γ(g) are simultane-
ously block diagonal. It is a fundamental fact that rep-
resentations of finite groups are always fully reducible8.
In this case every representation is a direct sum of irre-
ducibles.
When speaking of irreducibility it is important to spec-

ify the field. A representation that is irreducible over R
may be reducible over C. Examples are provided by the
representations of the cyclic groups Zp for p > 2 as planar
rotations through angle 2π/p (this is discussed further in
Sec. IV). As we are concerned with real representations
on real vector spaces (Rn), irreducibility will be under-
stood over R unless otherwise noted.
Two more fundamental results that are instrumental to

the following analysis are Schur’s lemmas, which describe
the structure of homomorphisms between irreducible rep-
resentations. Though applicable in more general settings,
in the context of group representations they take the fol-
lowing form8.
Schur’s First Lemma: Suppose that Γ is an irre-

ducible representation of a group G acting on a vector
space V . If there exists a linear map M : V → V that
commutes with Γ for every g ∈ G,

V
M

−−−−→ V

Γ(g)





y





y

Γ(g)

V
M

−−−−→ V,

(5)
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then M is a multiple of the identity, M = λI.
Schur’s Second Lemma: Suppose that Γ1 is an ir-

reducible representation of a group G acting on a vector
space V 1 and that Γ2 is an irreducible representation of G
acting on V 2. If there exists a linear map M : V 1 → V 2

that commutes with Γi for every g ∈ G,

V 1 M
−−−−→ V 2

Γ1(g)





y





y
Γ2(g)

V 1 M
−−−−→ V 2,

(6)

then either M is zero or an isomorphism. In the latter
case the two representations Γ1 and Γ2 are equivalent.

IV. THE STRUCTURE OF EQUIVARIANT DYNAMICAL

SYSTEMS

This section reviews the structure theory of equivariant
dynamical systems9, since this is not widely known. Let
the representation ΓD define an action of the group G on
R

n. Then ΓD acts on the coordinate functions xi of Rn.
Denote by R[x] the set of all polynomials in variables
x1, . . . , xn. This set is a ring under the operations of
polynomial addition and multiplication. The action of
ΓD on the monomials xi induces an action on all of R[x]
in a natural way. This representation is denoted by ΓR.
Let p ∈ R[x] be a polynomial. If p is invariant un-

der Γ, p(Γx) = p(x), then p is said to be an invariant
polynomial. Otherwise p is said to be covariant. Since
ΓR is fully reducible, each polynomial p can be decom-
posed into components, each belonging to an invariant
subspace transforming under a particular irreducible rep-
resentation. The invariant polynomials all belong to the
same subspace, which transforms under the trivial repre-
sentation Γ(g) = In. The sets of invariant and covariant
polynomials each possess a basis set of polynomials from
which all others may be constructed through the ring
operations10. They are called an integrity basis and a
ring basis, respectively.
An arbitrary function f on R

n may be decomposed
with respect to the action ΓD of G on R

n into a sum of
an invariant and a covariant function. The invariant part
may be written as h0(p), where h0 is a (not necessarily
polynomial) function of the integrity basis polynomials,
p. The covariant part may be further decomposed as
∑

r hr(p)q
r, where r ≥ 1, the qr are polynomials in the

ring basis, and the hr are functions of the invariant poly-
nomials. If we define q0 ≡ 1 as a ring basis polynomial
representing the invariant irreducible subspace, an arbi-
trary function f may be written as f = hr(p)q

r, where
r ≥ 0 and summation is implicit over the repeated index.
Now consider a dynamical system ẋi = vi equivariant

under the representation ΓD of G. Each component of
the vector field may be expanded in the ring basis as
vi = hi

r(p)q
r. The behavior of the dynamical system

under the group operation g is determined by

gvi = ghi
r(p)q

r

gvi = hi
r(p)gq

r

ΓD(g−1)ijv
j = hi

r(p)Γ
R(g−1)rsq

s

ΓD(g−1)ijh
j
sq

s = hi
r(p)Γ

R(g−1)rsq
s,

(7)

where in the second line we used invariance of the hi
r,

in the third the definitions of the representations ΓD and
ΓR, and in the last the expansion of vj in the ring basis.
The last line must hold for each basis element qs in

the ring basis separately. The resulting equation may be
expressed as the commutative diagram

R[x]
h

−−−−→ R
n

ΓR(g)





y





y
ΓD(g)

R[x]
h

−−−−→ R
n,

(8)

demonstrating that h intertwines the two representations
ΓD and ΓR. We may regard R

n as a subspace of R[x]
spanned by the monomials xi. Since both ΓD and ΓR

are fully reducible, Schur’s first lemma may be applied
to the restriction of h to the irreducible subspaces. The
conclusion is that h is multiplication by a constant (that
is, an invariant polynomial) between equivalent repre-
sentations and zero otherwise. This severely restricts the
structure of the functions hi

j that define an equivariant
dynamical system.
For example, consider the representation ΓD = Rz(π)

of Z2, the equivariance group of the Lorenz system. The
invariant polynomials z, x2, xy, and y2 span an in-
tegrity basis. The ring basis polynomials x and y each
transform under the non-trivial one dimensional repre-
sentation Z2 → {1,−1}. The most general form of a
three dimensional dynamical system equivariant under
ΓD = Rz(π) is given by

d

dt





x
y
z



 =





0 h1
2 h1

3

0 h2
2 h2

3

h3
1 0 0









1
x
y



 , (9)

where each hi
j is a arbitrary function of the invariant

polynomials. The Lorenz system is defined by the choices
h1

3 = −h1
2 = σ, h2

2 = R − z, h2
3 = −1, and h3

1 =
−bz + xy.

V. THE STRUCTURE OF DIFFERENTIAL MAPPINGS

This section describes two properties of differential
mappings that restrict the structure of equivariant em-
beddings of dynamical systems. These are 1) the canon-
ical form of the image dynamical equations; and 2) the
preservation of transformation properties under differen-
tiation.
The differential mapping F in Eq. (4) is constructed

from the consecutive derivatives of a single observation
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function f . When the image dynamical system is well de-
fined (for example, when the mapping is an embedding)
the new vector field V at F (x) is given by

V i =
∂F i

∂xj
vj

=
d

dt

∣

∣

∣

∣

0

F i(ϕt(x))

(10)

It is immediate from the definition that V 1 = F 2. For
V 2 we have

d

dt

∣

∣

∣

∣

0

F 2(ϕt(x)) =
d

dt

∣

∣

∣

∣

0

d

ds

∣

∣

∣

∣

0

f(ϕs(ϕt(x)))

=
d

dt

∣

∣

∣

∣

0

d

ds

∣

∣

∣

∣

0

f(ϕs+t(x))

=
d

dt

∣

∣

∣

∣

0

d

ds′

∣

∣

∣

∣

t

f(ϕs′(x))

=
d2

dt2

∣

∣

∣

∣

0

f(ϕt(x))

= F 3(x),

(11)

where s′ = s+ t. By induction we have the general rule
that V i = F i+1 for i < m.

Therefore the image dynamical system always has the
canonical form

Ḟ 1 = F 2

Ḟ 2 = F 3

...

Ḟm−1 = Fm

Ḟm = h(F 1, . . . , Fm),

(12)

for some function h. We can express this canonical form
by Ḟ i = M i

j F
j + δimh(F ), where above the last row M

is an upper shift matrix (unit super-diagonal) and the
bottom row is zero,

M =











0 1 0 . . .
0 0 1 . . .
...

...
...

. . .

0











. (13)

Next we consider how the derivatives of the observa-
tion function f transform under a group operation g. By
definition of derivative (recalling that ϕt is the flow gen-
erated by v)

d

dt

∣

∣

∣

∣

0

f(ϕt(gx)) = lim
t=0

f(gx+ tvgx)− f(gx)

t

= lim
t=0

f(g(x+ tvx))− f(gx)

t

=
d

dt

∣

∣

∣

∣

0

f(g(ϕt(x))),

(14)

where in the second line we used the assumption of equiv-
ariance. It follows that if f is invariant under g then so
is its time derivative since f ◦ g = f . Suppose f = qi is
a ring basis polynomial. In this case

d

dt

∣

∣

∣

∣

0

qi(gϕt(x)) = Γi
j(g)

d

dt

∣

∣

∣

∣

0

qj(ϕt(x)), (15)

which just says the derivative of qi transforms under the
same representation as qi. In the general case of a lin-
ear combination of covariant polynomials multiplied by
arbitrary invariant polynomials, the derivative of f trans-
forms the same as f , that is, it is composed of the same
representations. This follows at once from the linearity
of the derivative, the chain rule, and the special cases
already considered.
Consider again the Lorenz system with observation

function x, which transforms under the parity repre-
sentation of Z2. The differential mapping F (x, y, z) =
(X,Y, Z) of the Lorenz system into R

3 constructed using
x is given by

X = x

Y = σ(y − x)

Z = σ(R+ σ − z)x− σ(1 + σ)y,

(16)

and it is apparent that the coordinate functions (X,Y, Z)
transform under the P representation of Z2. The canon-
ical equations of motion are satisfied with h given by11,12

bσ(R− 1)X − b(1 + σ)Y − (1 + b+ σ)Z

−X2Y − σX3 +
Y

X
(Z + (1 + σ)Y ) .

(17)

The canonical equations are also equivariant under P .

VI. THE STRUCTURE OF EQUIVARIANT

REPRESENTATIONS

This section applies the structure built up in the past
two sections to constrain the symmetry of equivariant dy-
namical systems under differential mappings. First, we
demonstrate that equivariance requires that an observa-
tion function be composed of polynomials transforming
under a single representation. Next, we demonstrate that
this representation is necessarily abelian, in fact cyclic.
Finally, we show that this representation is one dimen-
sional. We conclude that if the image of an equivariant
dynamical system is itself equivariant, the equivariance
group representation is necessarily one dimensional.
Suppose that f = F 1 is an observation function and

that F = (F 1, . . . , Fm) is the corresponding differential
mapping. Since the original dynamical system is equiv-
ariant, the image system will be equivariant under G if
the following diagram commutes

R
n F

−−−−→ R
m

ΓD(g)





y





yΓD′

(g)

R
n F

−−−−→ R
m.

(18)
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Recall that the definition of equivariance requires that
ΓD′

be faithful. As we shall see, Eq. (18) is often satis-

fied by an unfaithful representation ΓD′

. In this case
ΓD′

provides a faithful representation of some group
G′ homomorphic to G. Specifically, if ρ : G → ΓD′

is the homomorphism defining the representation, then
G′ ∼= G/ kerφ. We say that the image system is equiv-
ariant under G′ rather than G.
For instance, the Lorenz system is equivariant under Z2

acting as π rotations around the z-axis. The coordinate
function z is invariant under this action and a differen-
tial mapping constructed using this function results in a
dynamical system without symmetry. It is equivariant
under the identity representation ρ : Z2 → I3. We will
return to this example in Sec. VII.
As in Sec. IV we expand each component F i in the ring

basis of Rn as F i = hi
j(p)q

j . By essentially the same
reasoning that led to Eq. (8) we obtain the diagram

R[x]
h

−−−−→ R
m

ΓR(g)





y





yΓD′

(g)

R[x]
h

−−−−→ R
m,

(19)

showing that h intertwines ΓR and ΓD′

, that is hΓR =
ΓD′

h.
Using full reducibility, decompose ΓR and ΓD′

into
a direct sum of irreducible representations, ΓR =
diag

(

Γ(l1), . . . ,Γ(ls)
)

, and ΓD′

= diag
(

Γ(k1), . . . ,Γ(kr)
)

.
Similarly decompose R[x] and R

m into the corresponding
invariant subspaces on which the irreducible representa-
tions act, R[x] = U1 ⊕ · · · ⊕ Us and R

m = V1 ⊕ · · · ⊕ Vr.
Let the indices of hi

j refer now to invariant subspaces

rather than matrix elements so that hi
j : Uj → Vi is a

linear map for each i, j. Schur’s second lemma requires
that each hi

j be an isomorphism when non-zero, in par-
ticular Uj and Vi have the same dimension. We obtain
the commutative diagram

Uj

hi
j

−−−−→ Vi

Γ(lj)





y





yΓ(ki)

Uj

hi
j

−−−−→ Vi,

(20)

for each pair of indices (i, j).
Using the decompositions given by the previous para-

graph, Eq. (19) can be written in the block form







h1
1Γ

(l1) h1
2Γ

(l2) · · ·

h2
1Γ

(l1) h2
2Γ

(l2) · · ·
...

...
. . .






=







Γ(k1)h1
1 Γ(k1)h1

2 · · ·

Γ(k2)h2
1 Γ(k2)h2

2 · · ·
...

...
. . .






.

(21)
The components of F are built from covariant polyno-
mials. Suppose that f = F 1 contains a polynomial qr

transforming under some representation, which we as-
sume to be Γ(l1) without loss of generality. Then some

hi
1 is non-zero and therefore an isomorphism. Assume

without loss of generality that i = 1. We then have
h1

1Γ
(l1) = Γ(k1)h1

1, which shows that Γ(l1) and Γ(k1) are
isomorphic and therefore the same representation.
Now, by the results of Sec. IV every component of F

must contain a covariant polynomial transforming under
the same representation Γ(l1). This in turn requires that
hi

1 is non-zero (and therefore an isomorphism) for every
value of i. The first column of Eq. (21) then yields the
equation hi

1Γ
(l1) = Γ(ki)hi

1 for every i, which shows that

every irreducible representation Γ(ki) appearing in ΓD′

is
the same and equal to the representation Γ(l1). In the
same way, comparing the remaining columns shows that
every representation of ΓR is equal to Γ(l1) as well. A
very strong result follows: each component of F must
be composed of polynomials transforming under a single

irreducible representation.
It turns out that this representation cannot be arbi-

trary; it is necessarily abelian as we now show. Recall
the canonical form Ḟ i = M i

j F
j + δimh(F ) of the im-

age differential equations, where M is given by Eq. (13).
Equivariance under Γ yields the equation
(

Γi
jM

j
k −M i

j Γ
j
k

)

F k = δimh(ΓF )− Γi
mh(F ). (22)

The LHS is manifestly linear in F and the RHS must be
linear in F as well. When i 6= m the delta vanishes and
we must have Γi

mh(F ) be linear in F . Since h is always
non-linear in cases of interest (we are studying nonlinear
dynamical systems) we see that Γi

m = 0 and therefore

Γi
jM

j
k = M i

j Γ
j
k when i 6= m. By writing M i

j = δi+1
j ,

it follows immediately that Γi
j = Γi+1

j+1, which says

that Γ is Toeplitz in the basis spanned by the F i.
That every matrix in Γ is simultaneously Toeplitz im-

plies that Γ is an abelian representation. The compo-
nents of an n × n Toeplitz matrix A are completely de-
termined by the values along the anti-diagonal, which
can be considered as a vector of length 2n− 1. In index
notation we may write Aij = ai−j+n, in terms of the vec-
tor a. Similarly let Bij = bi−j+n. If A and B belong to
Γ then both products AB and BA belong to Γ and must
be Toeplitz.
Now the components AB and BA are given in terms

of the vectors a and b by

(AB)ij =

n
∑

k=1

an+i−kbn−j+k

(BA)ij =

n
∑

l=1

bn+i−lan−j+l.

(23)

In the expression for BA, the sum over l may be rewrit-
ten as a sum over k by setting l = n + 1 − k. A term
from the this sum is now given by a2n+1−k−jbk+i−1.
The anti-diagonal of a matrix is specified by the in-
dex condition i + j = n + 1. This relation can be
used to swap i and j in the terms giving BA, yielding
a2n+1−k−jbk+i−1 → an+i−kbn−j+k, which is exactly the
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form of the terms giving AB. Thus the two matrices have
identical anti-diagonals. But since the anti-diagonal de-
termines the entire matrix, the two matrices are identical.
We conclude that A and B commute.

Thus the representation Γ is necessarily abelian for
any equivariance group G. In particular, if a dynami-
cal system is equivariant under a non-abelian group G,
the largest equivariance group of any image system con-
structed by a differential mapping is the abelianization
G̃ = G/G(1), which is the quotient of the group by its
commutator subgroup G(1) = [G,G]. This is because if
G′ = G/N is any abelian quotient of G then G(1) ≤ N .

In other words, G̃ is the largest abelian homomorphic
image of G. It follows that a differential mapping for
a non-abelian G cannot provide an embedding equivari-
ant underG since group elements representing non-trivial
commutators are mapped to the identity.
For example, the alternating group A4 (the group of

all even permutations on four objects) is a non-abelian
group of order twelve. The commutator subgroup is iso-
morphic to the vierergruppe V4 and the abelianization
is Ã4

∼= A4/V4
∼= Z3, the cyclic group of order three13.

Therefore a differential mapping of a dynamical system
equivariant under A4 will have at most a three-fold sym-
metry. For n ≥ 5 An is non-abelian and simple13. Since

An is non-abelian, A
(1)
n is not trivial. Since An is simple

A
(1)
n must then be equal to all of An, and the abelianiza-

tion Ãn
∼= An/An is trivial. A differential mapping of a

dynamical system equivariant under An for n ≥ 5 never
has symmetry. Remarkably, we will see that differential
mappings for A4 and A3

∼= Z3 equivariant dynamical
systems never have symmetry either.
Finally, we show that Γ must be one dimensional. To

this end we momentarily extend to the complex plane.
Schur’s first lemma implies that every irreducible rep-
resentation of an abelian group is one dimensional over
C. There are thus two possibilities for Γ. Either the
representation is one dimensional over R and therefore
irreducible over C, or two dimensional over R and ex-
pressible as the direct sum of a one dimensional complex
representation and its complex conjugate, Γ = Γ(i)⊕Γ̄(i).
We now suppose that Γ is two dimensional. In the

decomposition Γ = Γ(j) ⊕ Γ̄(j), the complex irreducible
representation Γ(j) is one dimensional and unitary and
therefore a complex number of modulus one, which can
be written Γ(j)(g) = exp iφ(j, g). It follows that Γ is
similar to a real 2× 2 rotation matrix

Γ =

(

exp iφ 0

0 exp−iφ

)

≃

(

cosφ sinφ

− sinφ cosφ

)

. (24)

Note that every 2 × 2 rotation matrix is manifestly
Toeplitz. We may think of Γ as providing a homomor-
phism of G onto a finite subgroup of SO(2). Such a
subgroup is not only abelian, it is necessarily cyclic.
All of the irreducible representations of cyclic groups

are known8. If we let g denote the generator of the cyclic
group of order p then there are exactly p inequivalent

irreducible representations of Zp over C. They are given
by

Γ(q)(gm) = ǫmq, (25)

where ǫ is a primitive p-th root of unity and 0 ≤ q < p.
The representation q = 0 is always the identity. Setting
z = x+iy, the invariant basis polynomials for Γ(0) are z̄z,
zp, and z̄p. The covariant polynomials for Γ(j), j > 1, are
zj and z̄p−j . Since real representations are formed by the
direct sum of a complex representation and its complex
conjugate, q and p− q, the real basis polynomials are the
real and imaginary parts of the corresponding complex
polynomials.
In the defining representation on R

2, the x and y coor-
dinates transform under the Γ = Γ(1) ⊕ Γ̄(1) representa-
tion. The only other polynomials that transform under
this representation are the real and imaginary parts of
z̄p−1. If a dynamical system is equivariant under Γ then
in a two dimensional subspace on which Γ acts the equa-
tions of motion have the complex form ż = ξz + ζz̄p−1,
with ξ and ζ functions of invariant polynomials. In terms
of the real variables we have

d

dt

(

x

y

)

=

(

ξ1 ξ2
−ξ2 ξ1

)(

x

y

)

+

(

ζ1 ζ2
−ζ2 ζ1

)(

ℜ(z̄p−1)

ℑ(z̄p−1)

)

.

(26)
Notice that the real an imaginary parts of z̄p−1 are non-
linear in x and y when p > 2.
Now if the image of a dynamical system under a differ-

ential mapping is equivariant under Γ, then as was shown
in Sec. VI the image phase space Rm must decompose as
R

m = R
2⊕· · ·⊕R

2 with the same representation Γ of Zp

acting on each factor R2. In each subspace the equations
of motion must have the form of Eq. (26). This is a sec-
ond canonical form for the equations of motion (Eq. (12)
being the first).
Denote by Y the coordinates defining this decomposi-

tion so that (Y 2k−1, Y 2k) spans the k-th subspace. These
coordinates are related to the canonical coordinates F by
some invertible linear transformation, Y i = P i

j F
j . We

wish to show that the two canonical forms of the equa-
tions are consistent only when h is linear.
The differential equations in the Y coordinates are

given by

Ẏ i = P i
j Ḟ

j

= P i
j M

j
kF

k + P i
m h(F )

= P i
j M

j
k (P

−1)kl Y
l + P i

m h(P−1Y )

= N i
j Y

j + Cih̃(Y ),

(27)

where N i
j and Ci are constants and h̃ = h ◦ P−1 is a

non-linear function of Y . For simplicity in the following
we will drop the tilde and write h for h̃.

The function hmay be uniquely written as h = hr(p)q
r

in terms of invariant and covariant polynomials. If we
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identify (Y 2i−1, Y 2i) = (x, y) for any i, then the most
general form of h consistent with Eq. (26) is

h = h1x+ h2y + h3ℜ(z̄
p−1) + h4ℑ(z̄

p−1), (28)

where the hi are functions of invariant polynomials. Us-
ing this decomposition of h, Eq. (27) becomes in the
(Y 2i−1, Y 2i) = (x, y) subspace

d

dt

(

x

y

)

=

(

N11 + C1h1 N12 + C1h2

N21 + C2h1 N22 + C2h2

)(

x

y

)

+

(

C1h3 C1h4

C2h3 C2h4

)(

ℜ(z̄p−1)

ℑ(z̄p−1)

)

.

(29)

Comparing this to Eq. (26) leads to the equations ζ1 =
C1h3 = C2h4 and ζ2 = C1h4 = −C2h3. These equations
require that C2

1 = −C2
2 , or C1 = C2 = 0, which in turn

implies that ζ1 = ζ2 = 0. We conclude that that this
equation is satisfied only if h is linear. But if h is linear
then the image dynamical system is linear and uninter-
esting. We therefore conclude that for non-linear systems
the representation Γ must be one dimensional.
For completeness, we note that in the linear case two

dimensional equivariant embeddings do exist. Consider
the simple two dimensional dynamical system

ẋ = y

ẏ = −x,
(30)

which is equivariant under SO(2) and therefore every Zp

acting as rotations through angle 2π/p. For p > 2 the
complex representation Γ1 = {1, ǫ, ǫ2, . . . , ǫp−1} is faith-
ful. The complex basis polynomial is z = x + iy, and
the monomials x and y form a basis for the two dimen-
sional real representation. Suppose that x is chosen as
the observation function. Then since ẋ = y the differ-
ential mapping is F = (x, y) which is just the identity.
The image system is in this case identical to the orig-
inal system and manifestly equivariant under the same
representation of the same symmetry group.
As an application of the results of this section, consider

the Thomas system6, which is defined by the differential
equations

ẋ = −bx+ ay − y3

ẏ = −by + az − z3

ż = −bz + ax− x3.

(31)

These equations have a six-fold symmetry. They are
equivariant under the parity representation P of Z2 with
generator g2 = −I3 as well as the C3 = Ru(2π/3) repre-
sentation of Z3, where u = (1, 1, 1). The generator of C3

is the cyclic permutation matrix

g3 =







0 1 0

0 0 1

1 0 0






. (32)

Since the Thomas system is equivariant under both Z2

and Z3 it is equivariant under their direct product Z6 ≃
Z2⊗Z3 with generator g6 ≡ g2g3 = g3g2. This generator
can also be described by a 2π/6 rotation about u followed
by a reflection in the plane perpendicular to u. The gen-
erators of the two subgroups are recovered as C3 = g26
and P = g36 .
A more convenient representation of the system is

given by transforming to new variables defined by the
linear transformation9







X

Y

Z






=







−
√
3
2

√
3
2 0

− 1
2 − 1

2 1

1 1 1













x

y

z






, (33)

which makes Z the new rotation axis so that projection
onto the XY -plane exhibits the six-fold symmetry. Basis
polynomials for both subgroups can be constructed and
have degree at most three. Each basis polynomial has
definite transformation properties under the two genera-
tors C3 and P . The transformation properties of these
polynomials and the equivariance properties of the im-
ages constructed from them are summarized in Table I.

TABLE I. Transformation properties for basis polynomials of
degree at most two for the symmetries of the Thomas system,
P and C3. Cov and Inv denote covariance and invariance re-
spectively. The final column gives the symmetry of the image
system using the corresponding basis polynomial as observa-
tion function. An I denotes the identity representation or
invariance.

Polynomial P C3 Image

X,Y Cov Cov P

Z Cov Inv P

X2 + Y 2 Inv Inv I

X2
− Y 2, 2XY Inv Cov I

All four combinations of invariance and covariance be-
tween the two subgroups exist. The coordinate functions
X and Y are covariant polynomials of both symmetries
and are therefore covariant polynomials of the complete
symmetry group Z6. However, in accordance with the re-
sults of this section, no differential mapping constructed
from any of these functions can possess more than the Z2

symmetry. A direct calculation shows that differential
mappings constructed from X or Y have parity symme-
try, and visual inspection shows no apparent rotational
symmetry.

VII. THE STRUCTURE OF ONE DIMENSIONAL

REPRESENTATIONS

The previous section demonstrated that the only non-
trivial equivariance group representations for differential
mappings are one dimensional. In this case every ba-
sis polynomial must be an eigenvector with eigenvalue
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λ = ±1. Since all components of the mapping F trans-
form under the same representation, each component is
a simultaneous eigenvector with the same eigenvalue. If
λ = 1 then the image is equivariant under the trivial rep-
resentation Γ(g) = Im for every g. The image system
is no longer equivariant under G, but rather invariant.
We say that F has modded out the symmetry of the dy-
namical system. In this case, the nicest possible behavior
for F is providing a |G| → 1 local diffeomorphism9. We
noted in Sec. VI that constructing a differential mapping
of the Lorenz system using the z coordinate results in
an image without symmetry. This mapping is in fact a
2 → 1 local diffeomorphism9.

On the other hand if λ = −1 then the image co-
ordinates transform under a representation satisfying
Γ(g) = ±In and Γ(g2) = In for every g. In this case Γ fur-
nishes the parity representation of G ∼= Z2 in R

m. This
representation defines a group homomorphism G → Z2.

The necessary and sufficient condition for the existence
of such a homomorphism is the existence of a normal
subgroup N ⊳ G with |N | = |G|/2, since by Lagrange’s
Theorem we have |G/N ||N | = |G| and Z2 is the unique
group of order two. We see immediately that when the
order of G is odd that no such homomorphism can exist.
In particular, if a dynamical system is equivariant un-
der Zp, p odd, its image under any differential mapping
cannot be equivariant.

When |G| is even such a homomorphism may or may
not exist, depending on the group. For example the alter-
nating group A4 has order twelve but has no subgroup of
order six13, so possesses no homomorphism onto Z2. One
could also note that the abelianization is Ã4

∼= Z3, which
possesses no homomorphism onto Z2. Since there is no
homomorphism of A4 onto Z2, the image of an A4 equiv-
ariant dynamical system under any differential mapping
cannot have symmetry.

Notice that A4 is non-abelian. Abelian groups of even
order always possess a normal subgroup of half the group
order, which we now show. By the fundamental theorem
of finite abelian groups we can write G as a direct prod-
uct of cyclic groups. Since the order of a direct product
is the product of the orders, at least one summand Zr

must have even order. If the generator of this subgroup
is h, then h2 generates a cyclic subgroup of order r/2.
But every subgroup of an abelian group is normal, which
establishes the claim.

Consider again the Lorenz system, equivariant under
the representation Γ = Rz(π) of Z2. The basis set of
invariant polynomials is given by z, x2, xy, and y2, while
the basis set of covariant polynomials, which transform
under P , is given by x and y. Constructing a differ-
ential mapping using an invariant polynomial results in
an image without symmetry. For instance, using z re-
sults in a 2 → 1 local diffeomorphism onto the proto-
Lorenz system9. On the other hand, using a covariant
function such as x results in a parity equivariant image,
the induced Lorenz system. In no case is it possible to
construct an image transforming under the same repre-

sentation as the original Lorenz system, Rz(π). This
agrees with previous results7, obtained using different
techniques. Similar remarks would hold for any Rz(π)
equivariant dynamical system, such as the Burke and
Shaw system.

It is worth stressing this last observation. If one con-
structs a differential mapping of any equivariant dynami-
cal system and the image system is equivariant, it is nec-
essarily parity equivariant, regardless of the original sym-
metry. This is congruent with the results of the Thomas
system in Sec. VI. In particular this means that a differ-
ential embedding of a system equivariant under a group
of order greater than two cannot be equivariant under a
faithful representation of the symmetry group. In gen-
eral, symmetries are not preserved by differential embed-
dings constructed from a single observation function.

VIII. IMPLICATIONS FOR EMBEDDINGS

An important consequence of the foregoing analysis is
that in almost all cases equivariant differential mappings
are not embeddings. This is immediate if the symmetry
of the original system has order |G| > 2. Specifically, the
action of G partitions the original phase space into |G|
symmetry related domains. Since the image system has
only two symmetry related domains, the original domains
are mapped onto the image domains in a |G|/2 → 1 fash-
ion. If the image system is invariant, these domains are
mapped in a |G| → 1 fashion.

Even when |G| = 2 one may fail to obtain an em-
bedding when the original representation of Z2 is not
the parity representation. Every representation of Z2

acting in R
n is given in the appropriate basis by Γ =

diag(1, · · · , 1,−1, · · · ,−1). Representations are distin-
guished by their signature, that is, the number of +
signs in this matrix. Since the coordinate directions cor-
responding to the + signs are left invariant (and those
corresponding to the − signs covariant), representations
are distinguished by the dimension of their invariant sub-
space. The parity representation leaves only the origin
(zero dimensional subspace) invariant.

A differential mapping must map the symmetry in-
variant set (not to be confused with the dynamical in-
variant set) of the original system onto that of the im-
age system. When the original invariant set has non-
zero dimension, this identification obviously precludes an
embedding. However, in many cases this invariant set
may be considered disjoint from the flow. In the case of
the Lorenz system, the z-axis is the stable manifold of
the central fixed point and is generally ignored (excised)
when discussing embeddings.

Even with this understanding trouble still arises. De-
note by x and y the invariant and covariant coordinates,
respectively, so that Γ(x, y) = (x,−y). Let F be the dif-
ferential mapping between spaces of the same dimension.
If J denotes the Jacobian at (x, y), then at (x,−y) we
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have

∂F (x, y)

∂(x, y)

∣

∣

∣

∣

(x,−y)

=
∂F (x,−y)

∂(x,−y)

∣

∣

∣

∣

(x,y)

= −
∂F (x, y)

∂(x,−y)

∣

∣

∣

∣

(x,y)

,

(34)
so that the Jacobian determinants are related by

|J(x,−y)| = (−1)#x|J(x, y)|, (35)

where #x is the number of invariant coordinates. We see
that if #x is odd, the Jacobian determinants at (x, y) and
at Γ(x, y) have opposite sign, and so the Jacobian must
become degenerate somewhere along any curve connect-
ing these two points. This presents an obstruction to
obtaining an embedding into a space of the same dimen-
sion as the original system. We note, however, that this
condition on the Jacobian is not an obstruction to finding
an embedding in higher dimensions.
For example, the Lorenz system has the z-axis as a one-

dimensional invariant subspace. Therefore no equivariant
differential mapping of Lorenz into R

3 can be an embed-
ding. This is true for any Rz(π) equivariant dynamical
system. However, for the Lorenz system, a differential
mapping constructed from the x coordinate does provide
an embedding into R

4 and higher dimensions. This is
worked out explicitly in7.
The general theory presented in this paper provides

the following implications for the four dynamical systems
listed in the introduction: an equivariant embedding of
the Kremliovsky system Eq. (3) is possible that preserves
the parity symmetry; an equivariant embedding of the
Lorenz system Eq. (2) or the Burke and Shaw system is
possible, but the symmetry necessarily changes from ro-
tation to parity; an equivariant embedding of the Thomas
system Eq. (31) is not possible.
Finally, we note that while differential mappings typ-

ically destroy symmetry, it is sometimes possible to re-
cover the lost symmetry. If one has an invariant (non-
equivariant) image it is possible to construct a lift of the
image system to a covering system with any prescribed
symmetry. If the original symmetry group and repre-
sentation are known, then a lift to a system equivariant
under this symmetry is possible. This two part process
of generating an invariant image and lifting to an equiv-
ariant system yields an embedding of the original system
which preserves symmetry. For details of this construc-
tion, see9,14,15.

IX. CONCLUSIONS

This paper has considered the embedding problem for
equivariant dynamical systems. Equivariant dynamical
systems possess a rather rigid structure that constrains

this problem. We have shown that for any dynamical sys-
tem equivariant under any representation of any discrete
equivariance group, there are only two possibilities when
attempting to construct equivariant images under differ-
ential mappings: either 1) the image is invariant; or 2)
the image is equivariant under the parity representation
of Z2. An immediate corollary is that the only symme-
try that can be preserved under a differential mapping is
parity symmetry.

It follows that in almost all cases differential mappings
are not embeddings. This is always the case if the origi-
nal symmetry has order |G| > 2, since symmetry related
domains in the original system are mapped onto sym-
metry domains in the image in a |G| → 2 or |G| → 1
fashion. Even if |G| = 2, an equivariant differential map-
ping of an n-dimensional system into R

n will fail to be
an embedding if the dimension of the symmetry invari-
ant subspace is odd. Embeddings in the same dimension
are only possible when the symmetry invariant subspace
has even dimension, such as when the original system is
already parity equivariant. The symmetry of an equiv-
ariant dynamical system typically cannot be preserved
under differential embedding.
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