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An algorithm inspired by Genome sequencing is proposed which “reconstructs” a single long trajectory of a
dynamical system from many short trajectories. This procedure is useful in situations when many data sets are
available but each is insufficiently long to apply a meaningful analysis directly. The algorithm is applied to the
Rössler and Lorenz dynamical systems as well as to experimental data taken from the Belousov-Zhabotinskii
chemical reaction. Topological information was reliably extracted from each system and geometrical and
dynamical measures were computed.
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I. INTRODUCTION

A recent article �1� explored the possibility of reconstruct-
ing a long time-series from multiple short time-series in or-
der to carry out fractal dimension calculations. The motiva-
tion for such a procedure is the desire to study dynamics in
situations when long time-series simply are not available,
either from practical �cost� or inherent �short-lived phenom-
enon� limits in an experiment.

An important instance of this can occur in electroencepha-
lographic recordings using multipin sensors �2,3�. Record-
ings are made from many ��100� pins over long times dur-
ing which behavior modality can change often, rapidly, and
significantly. To analyze brain activity during a single modal-
ity, long signals from each pin can be decomposed into short
segments representing each of the modalities experienced.
The short signals from all electrodes during a single modality
can then be synthesized into a longer signal using the meth-
ods described below. The resulting long signal describing a
single behavior modality can then be used in standard ways
for geometric, dynamical, and topological analyses.

The method of reconstruction in �1� is based on recur-
rence plot methods. Start with many short trajectories of vec-
tor data. At a given point x in the reconstruction determine
the successor as follows. Calculate the nearest neighbors of x
in phase-space within some distance � and then jump with
probability p to the successor �in a short data set� of a ran-
domly chosen neighbor, otherwise to the successor of x. If x
is at the end of a short segment, jump to the future of a
neighbor with probability one.

We offer a different method inspired by biological DNA
methods. Since we start with many actual short trajectories
of the system under study, we wish to take full advantage of
this data and glue these trajectories together in a way that
preserves as much of the given dynamics as possible. We
then use the reconstructed time-series to compute the box-
counting dimension and largest Lyapunov exponent as well
as extract periodic orbits and compute topological indices.
This method is illustrated for the Rössler and Lorenz attrac-
tors. We also reconstruct and analyze an attractor occurring
in experimental data taken from the Belousov-Zhabotinskii
chemical reaction.

The organization of the paper is as follows. In Sec. II we
describe the reconstruction algorithm. We use this algorithm

to reconstruct the Rössler attractor from many short data sets
in Sec. III. In Sec. IV we calculate geometric and dynamical
measures as well as perform a topological analysis on the
attractor reconstructed in Sec. III. In Secs. V and VI we do
the same for the Lorenz system. We then apply the recon-
struction algorithm to experimental data taken from the
Belousov-Zhabotinskii reaction in Sec. VII and analyze the
resulting reconstruction in Sec. VIII. We consider variations
in the algorithm in Sec. IX and summarize our results in
Sec. X.

II. RECONSTRUCTION

In order to synthesize a number of smaller time-series
fragments into a longer time series, we used a variant of the
shotgun approach to genome sequencing �4�. The biological
procedure involves taking a long DNA sequence, breaking it
up into overlapping shorter segments, exponentially amplify-
ing the number of each of these segments, and then finding
overlapping regions on segments that allow the reconstruc-
tion of the entire original DNA sequence. We have adopted a
variant of this matching method that does not employ seg-
ments overlapping in time. Our method, using nonoverlap-
ping segments, works because each segment exists in a part
of a strange attractor. As a consequence, segments that are
nonoverlapping in the time domain are effectively overlap-
ping in the phase-space domain, where the overlap tests are
actually carried out.

Suppose we have N data sets of length L, where each data
point is a vector in some n-dimensional phase space. �The
algorithm may be used on data sets of unequal length with
obvious modifications.� Our data sets will then be labeled as
Dj = �x1

j ,x2
j , . . . ,xL

j �, where 1� j�N.
Form a new trajectory as follows. First, predefine a

threshold ��0 and a minimum and maximum length such
that 0�Lmin�Lmax�L. These are the overlap search param-
eters. For each l satisfying Lmin� l�Lmax define a distance
�i , j	l between segments Di and Dj by

�i, j	l =
1

l


k=1

l

�xL+1−k
i − xk

j� . �1�

These functions measure the average Euclidean distance be-
tween the last l points in Di and the first l points in Dj �see
Fig. 1�.
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Begin with an arbitrary initial segment Dj0 and minimize
the distance �j0 , j	l over every l and every segment Dj with
j� j0. If j= j1 minimizes the distance to j0 with overlap
l= l1, then the next sequence in the reconstruction will be Dj1.
Next minimize the distance �j1 , j	l over every l and every
j� j0 , j1, since we wish to avoid complete circuits �this “use
and do not replace” condition is eliminated in Sec. IX D�.
Continue in this fashion until the minimum distance exceeds
the threshold � �likely� or all data sets have been exhausted
�not likely�. This produces a sequence of data sets and over-
laps �j0 , l1 , j1 , l2 , j2 , . . .� from which we will reconstruct the
trajectory.

Build a long trajectory by concatenating the short trajec-
tories, but with an appropriate average of the points where
data sets overlap. More specifically, begin by writing down
the first L− l1 data points of the first data set Dj0. Next, lin-
early interpolate between the last l1 points of Dj0 with the
first l1 points of Dj1 and then write down the next L− l1− l2
points of Dj1. Then interpolate between the remaining l2
points that overlap with the first l2 points of Dj2, etc.

The linear interpolation is a simple weighted average of
the points. Specifically, if the points in the overlap region are
xL−l+1

j1 , . . . ,xL
j1 and x1

j2 , . . . ,xl
j2, the interpolated points will be

x̂k =
l + 1 − j

l + 1
xL−l+k

j1 +
k

l + 1
xk

j2, �2�

where 1�k� l. We note that when k=0 or k= l+1 this ex-
pression gives �respectively� the last or first point on a short
sequence not in the overlap region �see Fig. 2�.

This scheme can be repeated for different values of � or
by starting from different initial data sets until a sufficiently
long data set has been reconstructed. We emphasize that,
even by changing these parameters, it is unlikely that all the
original data will be used in the reconstructed trajectory. The
advantage of this method is that most of the reconstructed
data set consists of actual trajectories and the overlapping
regions are smoothly interpolated. The search conditions can

also be relaxed so that segments can be matched away from
their ends. This and other variants are discussed further in
Sec. IX

III. RECONSTRUCTION OF THE RÖSSLER ATTRACTOR

Once a time-series has been reconstructed by the method
of Sec. II, it can be used as a surrogate for a single long data
set in order to learn about the dynamics. In order to test this
method we integrated the Rössler equations,

ẋ = − y − z ,

ẏ = x + ay ,

ż = b + z�x − c� , �3�

at the parameter values �a=b=0.2, c=5.7� with an integra-
tion step of 0.01. After letting transients die out we recording
every fifth point �xi ,yi ,zi�, which corresponds to approxi-
mately 130 samples per cycle �5�. From a single long data set
we extracted N=500 data sets, each of length L=200. This
was accomplished by removing, after every 200 points, a
certain number of points, each number chosen at random
between 50 and 150. The resulting short data sets each rep-
resent approximately a period and a half of the dynamics and
may be regarded as independent.

We applied the reconstruction algorithm with a threshold
of �=0.5 �or approximately 2.5% of the attractor diameter�
and overlap parameters Lmin=5 and Lmax=30. The results are
not sensitive to the choice of Lmin and Lmax.

The reconstruction algorithm produced a chain of 159 of
the data sets, resulting in a data set 29 032 points long, or
roughly one-third of the total data. The mean overlap ��i , j		
between the data sets was 0.0943, which corresponds to only
20% of the threshold �0.5% of the attractor diameter�. The
reconstructed attractor is shown in Fig. 3.

We chose the �−y ,z�-half-plane as a Poincaré section. Ev-
ery short trajectory intersected this plane either once or
twice. A return map was constructed from the subset of short
segments that intersected the Poincaré section twice. This
return map is shown in Fig. 4 �+ signs�. A return map for the
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FIG. 1. A comparison between the last four iterates of sequence
i with the first four of sequence j.
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FIG. 2. Linear interpolation of the reconstruction in an overlap-
ping region.

FIG. 3. Rössler attractor reconstructed from the short data sets.
For clarity, only the first half of the reconstructed data set was
plotted.
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reconstructed data ��, rigidly displaced upward� is also
shown in this figure.

IV. ANALYSIS OF RÖSSLER DATA

A. Geometrical measures

We performed a standard box-counting dimension calcu-
lation on the reconstructed attractor, yielding a dimension of
1.92 �see Fig. 5�. This agrees quite well with the value 1.94
calculated on the original full data set. Both values are rea-
sonably close to the accepted value of 2.01. We note that in
�1� the correlation dimension was similarly underestimated
for an ensemble of reconstructions of the Rössler attractor,
yielding values of the form 2−� with 0���0.6 �cf. Fig.
10�c� in �1��. In fact, underestimation of this quantity is char-
acteristic �6�.

For an interesting comparison we also made a dimension
calculation on a data set consisting of all the short trajecto-
ries simply lumped together without any ordering or attempt
at reconstruction. In this case we found the dimension to be
1.93, which is consistent with the previously calculated val-
ues. We believe this is explainable by appealing to ergodic-
ity. In this case the reconstruction of long trajectories is un-
necessary for geometrical measures, at least assuming the
short trajectories well-sample the attractor.

B. Dynamical measures

Next we calculated the largest Lyapunov exponent using
the methods of Wolf et al. �7� and Rosenstein et al. �8�.
Using Wolf’s method we first calculated the value 0.070
from the equations of motion. The values for the full experi-
mental and reconstructed attractors were 0.068 and 0.075,
respectively �Fig. 6�. The respective errors are 2.9% and
7.1%.

Following Rosenstein’s method, the value obtained for
the original attractor �see Fig. 7� was 0.062 �11.4% error� and
the value obtained for the reconstructed attractor was
0.069 �1.4% error�. In opposition to the box-counting
dimension estimate, no attempt was made to estimate the
largest Lyapunov exponent from the union of all short trajec-
tories since this dynamical measure requires a trajectory to
follow.

C. Topological measures

We applied the method of close returns to the recon-
structed Rössler time series to search for unstable periodic
orbits in the strange attractor. We searched for orbits up to
period ten, finding at least one orbit of each period. Each
orbit was identified by name �its symbol sequence� by using
the first return map. The linking numbers for the orbits
through period five were computed and are summarized in
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FIG. 4. Comparison of the first return maps from the original
and reconstructed data: + return map from the original 500 short
data sets; � return map from the reconstructed data. The latter is
shifted upward by 0.5.

0

2

4

6

8

10

12

-4 -2 0 2 4 6 8 10

ln
(b

ox
nu

m
be

r)

ln(inverse edge length)

0

2

4

6

8

10

12

-4 -2 0 2 4 6 8 10

ln
(b

ox
nu

m
be

r)

ln(inverse edge length)

0

2

4

6

8

10

12

-4 -2 0 2 4 6 8 10

ln
(b

ox
nu

m
be

r)

ln(inverse edge length)

FIG. 5. Log-log plot �log base e� of box number versus inverse
edge length for Rössler attractor: + the original attractor; � recon-
structed attractor �offset right by 1�; � the union of all short trajec-
tories �offset right by 2�. The slope in the stable range is the box-
counting dimension.
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FIG. 6. Plot of the cumulative average of the largest Lyapunov
exponent for the reconstructed Rössler attractor using the method of
Wolf et al. �7�.
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FIG. 7. Plot of �ln�divergence�	 versus time for Rössler attractor
using the method of Rosenstein �8�: �solid� original attractor;
�dashed� reconstructed attractor. The slope in the stable range is
largest Lyapunov exponent.
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Table I �all linking numbers are negative, which has been
suppressed�. This table agrees with the known linking num-
bers of these orbits in the Rössler system �9�.

Two of the periodic orbits we extracted from the recon-
structed time series possess positive topological entropy. One
was the period eight orbit 00101101 with a topological en-
tropy of 0.346 034. The other was the period seven orbit
0010101, which has a topological entropy of 0.476 818 and
is shown in Fig. 8. This figure shows in alternating symbols
the trajectories from the short data sets used to reconstruct
the periodic orbit. The interpolation scheme illustrated in
Fig. 2 was not used in producing this orbit. In spite of this
the discontinuities between overlapping segments are barely
discernable.

The self-relative rotation rates of the period seven orbit,
from which the entropy may be calculated, were found to be
�0�1� 2

7 �4� 3
7 �2, as explained in �5,10�. The existence of periodic

orbits with positive topological entropy proves that the un-
derlying dynamics is chaotic �9�. Moreover, the topological
entropy of the system is bounded below by the entropy of
any of its orbits. In the present case the attractor has an
entropy no less than 0.476 818.

V. RECONSTRUCTION OF THE LORENZ ATTRACTOR

Next we applied our reconstruction algorithm to the at-
tractor generated by the Lorenz equations,

ẋ = ��y − x� ,

ẏ = x�R − z� − y ,

ż = xy − bz , �4�

at the parameter values ��=10, R=28, b=8 /3�. In this
case we used an integration step of 0.0058/5 and recorded
every fifth point �after letting transients die out�. This corre-
sponds to about 130 samples per period with respect to the
two-component Poincaré section �11,12�. We extracted
N=500 data sets of length L=200 by removing random in-
tervals of length between 50 and 150 points from a single
long time-series. These parameters are comparable to those
used for the Rössler system.

We applied the reconstruction algorithm with a tolerance
of �=2.1 �or approximately 2.5% of the attractor diameter�
and overlap parameters Lmin=5 and Lmax=30. The results are
not sensitive to the choice of Lmin and Lmax. Again, these
values are comparable to those used in the reconstruction of
the Rössler attractor.

The reconstruction algorithm produced a chain of 335 of
the data sets, resulting in a data set 61 027 points long, or
roughly one third of the total data. The mean overlap be-
tween the data sets was 0.07, which corresponds to only
3.3% of the tolerance. The reconstructed attractor is shown
in Fig. 9.

For the Poincaré section we chose two planes, one at
y=−9 and the other at y=+8, and recorded the successive x
values. The values were reoriented to measure distance away
from fixed points. Figure 10 shows the sections for the origi-

TABLE I. Table of linking numbers of periodic orbits through
period 5 for the reconstructed Rössler attractor. Orbits are labeled
by their itinerary on the Poincaré section.

1 01 001 011 0111 01111

1 0 1 1 1 2 2

01 1 1 2 2 3 4

001 1 2 2 3 4 5

011 1 2 3 2 4 5

0111 2 3 4 4 5 8

01111 2 4 5 5 8 8

FIG. 8. The period seven orbit 0010101 extracted from the re-
constructed Rössler data set. The original data sequences are plotted
alternating between + and � without interpolation.

FIG. 9. Lorenz attractor reconstructed from the short data sets.
For clarity, only the first third of the reconstructed data set was
plotted.
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FIG. 10. Comparison of the first return maps from the original
and reconstructed data: + return map from the original data; �
return map from the reconstructed data. The latter is shifted upward
by 3.0 for ease of comparison.

CROSS, MICHALUK, AND GILMORE PHYSICAL REVIEW E 81, 036217 �2010�

036217-4



nal �+ signs� and reconstructed ��, rigidly displaced upward�
data.

VI. ANALYSIS OF LORENZ DATA

A. Geometrical measures

For both the original and reconstructed attractor we cal-
culated a box-counting dimension of 1.83 �see Fig. 11�.
These values are somewhat lower than the accepted value of
2.07, corresponding to nearly a 12% error. As for the Rössler
attractor, we also calculated the value for the union of all
data sets and found a value of 1.87, which closely agrees
with the other values and in fact is closer to the accepted
value. Again, we believe this is explainable by appealing to
ergodicity.

B. Dynamical measures

For the differential equations, Wolf’s method �7� gave a
value of 0.90 for the largest Lyapunov exponent. Using
Wolf’s method �see Fig. 12�, the value determined from the
original attractor was 0.85 �5.6% error� and the value deter-
mined from the reconstructed attractor was 0.96 �6.7% er-
ror�. For the original attractor the Rosenstein method �8� �see
Fig. 13� gave a value of 0.83 �7.8% error�, while for the
reconstructed attractor it gave a value of 0.84 �6.7% error�.

C. Topological measures

As for the Rössler system we applied the method of close
returns on the reconstructed Lorentz time series to search for
unstable periodic orbits in the attractor. We searched for or-
bits from period two up to period ten, finding at least one
orbit of each period and all 14 orbits up to period five. Each
orbit was identified by name �its symbol sequence� by using
the first return map. The linking numbers for all 14 orbits
through period five were computed and found to agree with
their known values �9�. For brevity, only the linking numbers
of the six orbits with periods two through four are summa-
rized in Table II.

The period five orbits LLLRR and RRRLL are the cover-
ing orbits of the Rössler orbit 00101 �13�. Since the image
Rössler orbit has positive topological entropy �0.543 535�, so
do the covering orbits. Since the reconstructed attractor in-
cludes these positive entropy orbits we conclude that the
system is chaotic. As a result, the topological entropy of the
attractor is bounded below by 0.543 535.

VII. RECONSTRUCTION OF BELOUSOV-ZHABOTINSKII
CHEMICAL REACTION DATA

In order to test the reconstruction algorithm on experi-
mental data we used a time series from the Belousov-
Zhabotinskii chemical reaction �14,15�. The data set is a sca-
lar time series that measures the concentration of a bromine
ion, which oscillates chaotically in the experiment. The data
cover approximately 523 periods of oscillation, with an av-

TABLE II. Table of linking numbers of periodic orbits through
period 5 found in the reconstructed Lorentz attractor. Orbits are
labeled by their itinerary on the Poincaré section.

LR LLR LRR LRRR LLLR LLRR

LR 1 1 1 1 1 2

LLR 1 2 1 1 2 2

LRR 1 1 2 2 1 2

LRRR 1 1 2 3 1 2

LLLR 1 2 1 1 3 2

LLRR 2 2 2 2 2 3
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FIG. 11. Log-log plot �log base e� of box number versus inverse
edge length for Lorenz: + the original attractor; � reconstructed
attractor �offset right by 1�; � the union of all short trajectories
�offset right by 2�. The slope in the stable range is the box-counting
dimension.
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FIG. 12. Plot of the cumulative average of the largest Lyapunov
exponent for the reconstructed Lorenz attractor in Wolf’s method.
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FIG. 13. Plot of �ln�divergence�	 versus time for Lorenz attrac-
tor: �solid� original attractor; �dashed� reconstructed. The slope in
the stable range is largest Lyapunov exponent.
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erage sample rate of 125 points per period. We applied the
reconstruction algorithm directly to the scalar series and then
constructed an embedding in three dimensions from the re-
constructed time series.

Before discussing the details of the reconstruction we first
review the subtleties of embedding Belousov-Zhabotinskii
reaction data �9,16�. The scalar time series shows a slow,
almost uniform rise from each minimum to the following
maximum. The slope of this rise is, for all practical purposes,
the same for all 523 oscillations. As a result, direct differen-
tial embeddings of the data are problematic. The projection

onto the two components �di , ḋi�di−di−1� has long, very flat
regions. This projection is shown in Fig. 14. The second

derivative, d̈i�di+1−2di+di−1, is approximately zero in this
region. This flat region in the three dimensional differential
embedding is nearly one-dimensional and contains all the
orbit crossings, causing them to be indistinguishable. The
embedding problem is mitigated by using an integral rather
than the second derivative. The embedding using these three
coordinates, integral, original time series, and differential,
resolves this flat region and distinguishes orbit crossings, as
is seen in Fig. 15. For more details see �16�.

We adopted the following embedding �16�

xi = �di − �d	� + �xi−1,

yi = di,

zi = di − di−1, �5�

where �d	 is the long time average over the data set recon-
structed from scalar data sets and �=1–10−2 is related to the
memory of the integral. The resulting embedding is shown in
Fig. 15.

The existence of this flat region apparent in the yz projec-
tion shown in Fig. 14 is a problem not only for constructing
embeddings, but for the data reconstruction algorithm. In this
region all data sets are highly correlated and the reconstruc-
tion algorithm yields a very close match for any two data
segments that overlap there. A naïve matching of segments in
this region results in reconstructions that do not truly repre-
sent the original dynamics.

To avoid this problem, short data segments that have end
points in the flat region were not considered during the re-
construction. In the present case we created the short seg-
ments from a single long data set. Since creating these seg-
ments by making random cuts in the original data set would
result in short segments ending in the flat region which must
be discarded, we chose instead to maximize the number of
short segments by making cuts before and after successive
maxima in the original time series �see Fig. 16�. The maxima
fall outside the flat region. To prevent perfect overlap be-
tween adjacent segments, every other segment was dis-
carded. For this time series it is always possible to do this
“segment tailoring” on all segments if L	2�T+Lmax��272
for T�125 �samples/cycle� and Lmax=11. The procedure
created 261 short data sets, each covering just over one pe-
riod of oscillation.

The reconstruction algorithm was applied to these data
sets with the overlap fixed at eleven points and the tolerance
set at 2.5% of the range of the maxima. The reconstruction
utilized 227 of the 261 data sets. We embedded the recon-
structed data set using the integral-differential embedding
given in Eq. �5�. The result is visually indistinguishable from
the embedding of the original full data set shown in Fig. 15.

VIII. ANALYSIS OF THE BELOUSOV-ZHABOTINSKII
CHEMICAL REACTION DATA

Using the method of close returns we isolated periodic
orbits through period five from the embedded reconstructed

FIG. 14. Plot of di vs ḋi for Belousov-Zhabotinskii data. The flat
region of the data is apparent.

FIG. 15. Integral-differential embedding of Belousov-
Zhabotinskii data. Projection onto the first two coordinates �xi ,yi� is
shown.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600

d i

i

FIG. 16. Belousov-Zhabotinskii time series. The solid lines
show how the short segments were constructed from consecutive
maxima. The flat region is indicated by the nearly constant upward
slope preceding each maximum.
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data. The calculated linking numbers of the extracted orbits
agree with known values with the single exception of the
period four and five pair. The linking number of these orbits
was difficult to compute because some of the segments com-
prising the orbits were too close to resolve in the reconstruc-
tion. This difficulty can be seen in Fig. 17, which shows the
period four and period five orbits. The table of linking num-
ber is given in Table III. Unfortunately, no periodic orbits
with positive topological entropy were extracted from the
reconstructed time series.

IX. VARIATIONS IN THE ALGORITHM

A. Undersampled data

It may occur that data from an experiment are under-
sampled, so that the dynamics is not represented with suffi-
cient resolution. For example, the construction of a Poincaré
map can be problematic when iterates are generally far away
from the chosen section. Especially in “fast” regions of the
flow, straight lines interpolated between successive data
points can intersect each other, obviously violating the
uniqueness theorem and misrepresenting the dynamics.

In such cases a Fourier interpolation scheme can be uti-
lized to effectively increase the sample rate to a sufficient
level �5�. One finds a trigonometric representation of the data
in terms of sine and cosine functions and evaluates them at
intermediate values of angle to interpolate between the
known points. This is a natural choice for interpolation of
recurrent systems as the trigonometric functions are them-
selves periodic.

B. Scalar time series

It is most common experimentally to record scalar rather
than vector time-series data. When one has multiple short
scalar data sets, one could first embed each of the individual
data sets and then apply the reconstruction algorithm. How-
ever, as we demonstrated in Sec. VII it is also possible to
apply the algorithm directly on short scalar data sets and then
proceed to embed the reconstructed scalar time series. Care
must be taken so avoid matching segments with end points in
flat regions of the data.

C. Utilization of unused data

As has been pointed out, the reconstruction algorithm will
not generally use all of the original data points. Our recon-
struction of the Rössler attractor in Sec. III used about one-
third of the total data. Starting with a particular data set and
search parameters, the algorithm finds the best next data set
repeatedly until it can no longer stay within tolerance. How-
ever, having found this initial long data set, we can repeat the
procedure on the remaining unused data sets to obtain an-
other reconstructed data set, and so-on. We can treat each of
these reconstructions as independent long data sets and ana-
lyze each separately.

Another way to utilize more data is to relax the restriction
that the overlap comparison is just between heads and tails of
data sets. One can search for the best match of a certain data
set’s tail with any sequence of points in any other data set. If
the best match is found mid-data set, we can cut the data set
at that point, and save the unused portion for another trial
later. This variant of the algorithm would also tend to have
smaller average distances between matched sequences since
the search space is larger.

D. Direct determination of periodic orbits

It is possible, by slightly altering the algorithm, to run a
search for periodic orbits directly on the individual data seg-
ments without having to construct an intermediate long data
set. This can be done by stitching together the short times
series into approximately closed orbits by allowing the algo-
rithm to match any intermediate part of the last added seg-
ment with the beginning of the initial segment �implement-
ing a “use and replace” condition�. The advantage here is to
use all the data equally when searching for the periodic or-
bits, rather than a certain subset. The reconstruction algo-
rithm will always prefer the closest segment it finds, but if
several segments are within the close-return threshold they
could all be considered when searching for the orbits.

E. Comparison with the Shotgun Approach

To make a direct comparison with the actual shotgun pro-
cedure in biology, we integrated the Rössler equations as
before, but instead of removing random intervals to obtain
the short data sets, we chopped them up into overlapping
segments, just as in the original procedure in biology. The
amount of overlap was chosen at random between 5 and 30
points. This resulted in a total of 500 data sets.

TABLE III. Table of linking numbers of periodic orbits through
period 5 found in the reconstructed Belousov-Zhabotinskii data.
Orbits are labeled by their itinerary on the Poincaré section. Paren-
theses indicates the correct value that could not be reliably calcu-
lated. All values are negative, which has been suppressed.

1 01 011 0111 01011

1 0 1 1 2 2

01 1 1 2 3 4

011 1 2 2 4 5

0111 2 3 4 5 �8�
01011 2 4 5 �8� 8

FIG. 17. Period four �dashed� and five �solid� orbits from the
reconstructed attractor. The curves lie very close to each other in the
furthermost left region resulting in unreliable linking numbers.
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After randomizing the order of the data sets, the recon-
struction algorithm found three chains in the data, the first
using 496 data sets, the second three data sets, and the third
one data set. Running the algorithm on these three resulting
data sets returned the full original data set.

X. CONCLUSIONS

This paper has explored an algorithm for reconstructing
long time series from several short time series inspired by
the shotgun approach to genome sequencing. The Rössler
and Lorenz systems were studied in detail. We showed that
geometrical and dynamical measures could be extracted from
the reconstructed dynamics with a degree of confidence com-
parable to calculation with long clean data sets or with the
differential equations in the case of dynamical measures.

More importantly, we successfully performed a topological
analysis of the reconstruction. Many periodic orbits of both
systems were found, including several with positive topo-
logical entropy. The presence of positive entropy orbits dem-
onstrates that both systems were chaotic. We successfully
applied the reconstruction algorithm to experimental scalar
data from the Belousov-Zhabotinskii reaction. Next, we
looked at variations in the algorithm for dealing with under-
sampled data, with scalar data, for utilizing unused data, and
for making direct searches for periodic orbits. We discussed
the search for periodic orbits without explicit data recon-
struction, and finally compared our algorithm directly with
the biological procedure. The variations in the algorithm are
currently being implemented and will appear in a forthcom-
ing paper. The algorithm we have presented offers a robust
procedure for extracting topological information about a dy-
namical system from several short data sets.
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