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Abstract

The Flux Rule for calculating the EMF due to a changing magnetic

flux is critically examined. First, the rule is derived from Maxwell’s equa-

tions in a way that unifies the two contributions to the flux change. Then

it is shown that so-called “failures of the flux rule” are not problems with

the actual rule, but rather in trying to improperly deduce a stronger local

result from the weaker global result that the rule actually provides.

1 Faraday’s Law and the Flux Rule

The integral from of the Maxwell equations of classical electrodynamics are

∫

∂U

E · dA =

∫

U

4πρ

∫

∂U

B · dA = 0 (1-1)

∮

∂S

E · dl = −

∫

S

∂ B

∂ t
· dA

∮

∂S

B · dl = 4πJ +

∫

S

∂ E

∂ t
· dA, (1-2)

where S is an arbitrary, possibly moving surface with boundary ∂S, and U is an
arbitrary, possibly moving volume with boundary ∂U . By well-known methods,
these equations may be transformed into their local, differential versions, which
are

∇× E = 4πρ ∇ · B = 0 (1-3)

∇× E = −
∂ B

∂ t
∇× B = 4πj +

∂ E

∂ t
. (1-4)

We are particularly interested in Faraday’s law, expressing the relationship
between an electric field and changing magnetic field. It is often claimed that
this law is equivalent to the flux rule, but this is not strictly correct. Consider
the time derivative of a surface integral of some arbitrary vector field V over a
moving surface S. This may be written1

d

dt

∫

S(t)

V · dA =

∫

S(t)

(

∂ V

∂ t
+ (∇ · V )v −∇× (v × V )

)

dA, (1-5)

1See the Appendix
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where v = v(x, t) is the vector field describing the motion of the surface with
time. It should be noted that one cannot simply integrate the explicit change
in time of the vector field; one must include contributions due to the changing
region. This is a classical result in vector analysis which is not often remembered.

In the present case we are interested in the time derivative of the magnetic
flux integral, which is (since ∇ · B = 0)

−
d

dt

∫

S(t)

B · dA = −

∫

S(t)

(

∂ B

∂ t
−∇× (v × B)

)

dA (1-6)

=

∫

∂S(t)

(E + v × B) · dl, (1-7)

where we have used Faraday’s law and Green’s theorem, respectively, on the
two terms in the integral. If we designate this quantity by EMF we have

−
dΦB

dt
= EMF =

∫

∂S(t)

f · dl, (1-8)

that is, the EMF is simply the force per charge integrated around the loop. We
may safely add any electrostatic field to the E term present, as this contribution
will integrate to zero over the loop. Note that this expression is valid for any

path bounding a region, whether it corresponds to a physical path for current
or not.

This expression is not just the integral of E around the loop, which many
books erroneously call the EMF and is what one obtains when the variation of
the integration surface is ignored. It is this error that leads some to claim that
there are two unrelated source of EMF , one coming from changing magnetic
fields and one from the Lorentz force law. But the fundamental approach above
shows that these are unified by taking the proper derivative of the integral.
Moreover, calling the v × B term the Lorentz force is not strictly correct in
general, since v here refers to the velocity of the moving region which may or
may not correspond to the velocity of actual charges.

2 Applications of the Flux Rule

The relation between changing magnetic flux, EMF and the integral of force per
charge over a boundary is fundamental, being derived strictly from Maxwell’s
equations and the rules of vector calculus. Note that we have not yet mentioned
anything about voltage of current readings, which is typically what this rule is
used for.

When the loop of integration is a physical wire, if we multiply by q we get the
total force on charges throughout the loop, from which we deduce that there
is a current if and only if this total force on the charges is not zero. What
one typically does is create some conducting apparatus that is hooked up to a
current or volt meter. The magnetic flux through the ‘circuit’ is manipulated
in some fashion to create and EMF or current which is then read out by the
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meter. The surface is taken to be the region bounded by the wires that form
the circuit and then the EMF is taken to be the voltage difference seen in the
wire (see Fig. 1).

l

hv

B

I

Figure 1: Typical use of the flux rule in 1-D circuit. The moving circuit give a
change of flux of Bvh and drives a current I as indicated.

The reason this works is that we may identify, unambiguously, a privileged
integration path with the physical path of electrons in the circuit. More specif-
ically, if we calculate a non-zero EMF around a closed wire, we deduce that
there must be local current flow by Kirchhoff’s law. The charge can only move
along the one dimensional wire and must therefore move with the same constant

current everywhere, which gives the measured current. In one dimension there
is no other possibility. Note that what we have done is to move from a global,
integral result, to a local one by squeezing on the one dimensionality of the
setup.

The source of all so-called flux rule paradoxes or failures is precisely when
one attempts to answer whether a current flows in a circuit which includes a
bulk conductor of some sort. The real problem here is attempting to localize
the contributions to the integral so as to deduce a local current flow from the
global integral value. We cannot do this when there is more that one dimension
for current to move in.

I
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Figure 2: Faraday’s homopolar generator with rotating conducting disk.

The principle example is Faraday’s homopolar generator (Fig. 2). Here a
conducting disk of radius r rotates with uniform angular velocity ω in the plane
perpendicular to a constant magnetic field B. Consider two possible integration
lines abda and acbda, where b is fixed in space and c rotates with the disk. In
the first case there is no change in flux and no EMF . In the second case there is
a change of flux, given by ωr2B/2 since the path of integration moves w.r.t the
field. In typical discussions it is claimed that we have a paradox or contradiction
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since these predict different voltage or current readings.
No paradox arises because we actually are in no position to predict, what-

soever, whether there is a current in the wires. A priori, neither of the two
numbers computed above have anything to say about whether there is a current
present or not. The two dimensional nature of the rotating disk means that
more complicated local behaviors are possible. Specifically, there could be a
current along abda and yet zero EMF along this countour since in the disk the
current need not flow directly from a to b.

The flux rule only fails when we force it to say more than it is capable
of saying. Remember further that the integral relationships are valid for any
path, whether physical or not. Thus we get these same answers for the given
integration paths regardless of whether the platform is rotating or not, indeed
whether there even is a platform or not!

What we need to know is the actual path taken by electrons through the
platform and that requires a more detailed analysis. When we have one dimen-
sional wires this part is automatic since the current is constrained to be in the
wires. It turns out that the current follow line2 ac. Knowing this we may now
localize the integral along the path acbda and conclude that there is an EMF
in the external wire given by ωr2B/2, which is indeed what is measured.

3 Conclusion

In summary, the flux rule, relating EMF to changing magnetic flux in a circuit
is derived from Maxwell’s equations and thus is always valid. The application
of the rule to one dimensional circuits allows us infer the existence of measured
voltage or current by appealing to Kirchhoff’s law. However, when we have
multi-dimensional conductors present Kirchhoff’s law is no longer applicable
and we are simply not justified in saying whether a current flows or not without
first figuring out the actual path of current through the conductor. Once we
realize this we may conclude that the flux rule is never violated.

A Appendix

For the sake of completeness, we wish to derive equation 1-5. Like all compli-
cated vector calculus identities, it is best to actually forget the vector calculus
and use the machinery of differential forms, which makes everything simpler,
more elegant and general. However, to keep the presentation “elementary” and
“accessible”, we will use the classical language. We want to find the time deriva-
tive of the integral

I(t) =

∫

S(t)

V (t) · dA. (A-1)

2Without an applied field the electrons are constrained to rotate with the disk, thus having

the same angular velocity. Thus with the applied field the charges will additionally move

radially outward by the Lorentz force, at least in the adiabatic limit.
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We have (with the definition of derivative)

I ′(t) = lim
h→0

I(t + h) − I(t)

h
(A-2)

= lim
h→0

∫

S(t+h)
V (t + h) · dA −

∫

S(t)
V (t) · dA

h
. (A-3)

Our strategy will be to systematically pull out the various ways the first integral
depends on h, write the dependence to first order in h, and then take the (then
trivial) limit on each term.

First let us consider the variation of V with time. V (t+h) may be expanded
for small h as

V (t + h) = V (t) + h
∂ V

∂ t
(t), (A-4)

and the integral of this latter term becomes

lim
h→0

∫

S(t+h)

h

h

∂ V

∂ t
(t) · dA =

∫

S(t)

∂ V

∂ t
· dA, (A-5)

which is the contribution due to the change in V alone.
What is left is the effect of the change of domain. We will now make explicit

the dependence of V on position and ignore the time dependence. Changing the
domain of integration changes where the vector field V is evaluated spatially,
thus we expect the effect of the moving domain to include the spatial variation
of V . If a point x is in the original domain of integration and that point moves
with speed v(x), then the new domain will be integrated at x+ vh (for h small)
so that

V (x + hv) = V (x) + hv · ∇V (x). (A-6)

The second term integrates to

lim
h→0

∫

S(t+h)

h

h
v · ∇V (x) · dA =

∫

S(t)

v · ∇V · dA, (A-7)

and what remains is

lim
h→0

∫

S(t+h)

V · dA −

∫

S(t)

V · dA, (A-8)

and the only part of the expression we have not examined is dA.
This is most difficult part. dA can changes in two ways. The first is due

to shrinking or expanding of area and the second is due to a change in the
direction of the normal. We will treat the area change first. We suppose that
the surface can be described with coordinates u1, u2 so that the area element
looks like du1du2. We can express these quantities in terms of the three space
coordinates as

dui =
∂ ui

∂ xj
dxj dxj =

∂ xj

∂ ui
dui (A-9)
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Under the motion a point x and nearby point x + dx will move to

x → x + hv(x) (A-10)

x + dx → x + dx + hv(x + dx) (A-11)

= x + hv(x) + dx + hdx · ∇v(x), (A-12)

and subtracting the two gives the change in the dx as

dx → dx + hdx · ∇v(x). (A-13)

The corresponding changes in du are given by

dui
→

∂ ui

∂ xj

(

dxj + h
∂ vj

∂ xk
dxk

)

(A-14)

To first order in h the change in du1du2 is then

h

(

∂ u1

∂ xj
du1 +

∂ u2

∂ xj
du2

)

∂ vj

∂ xk
dxk. (A-15)

If we then express the dxk in terms of the dur, then not all terms contribute as
du1du1 has no meaning in a surface integral, for example. By canceling these
terms we are left with

h

(

∂ u1

∂ xj

∂ vj

∂ u1
+

∂ u2

∂ xj

∂ vi

∂ u2

)

du1du2 = h
∂ uk

∂ xj

∂ vj

∂ uk
du1du2 (A-16)

= h
∂ vj

∂ xj
du1du2 (A-17)

= h(∇ · v)du1du2. (A-18)

Finally, the change in normal. Recall that the normal is so called because
it is normal or perpendicular to the tangent to the surface at the given point.
We will calculate the new normal by evaluating the change in tangent plane.
Points are moved, to lowest order by x → x + hv. When points are moved by
a map, tangent vectors at the point are moved by the derivative of the map,
which is I + h∇v, where I is the identity matrix. If we write u1, u2 for the
tangent vectors spanning the tangent space we have

n = u1
× u2

→ u1(1 + h∇v) × u2(1 + h∇v) (A-19)

= n + h(u1
× (u2

· ∇)v − u2
× (u1

· ∇)v). (A-20)

Since the triple u1, u2, n forms a right-handed orthonormal basis, we can
expand all vectors in terms of them. We will expand (ui

· ∇)v as

(u1
· ∇)v = a1u

1 + a2u
2 + ann (A-21)

(u2
· ∇)v = b1u

1 + b2u
2 + bnn, (A-22)
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where
a1 = u1

· ((u1
· ∇)v) = (u1

· ∇)(u1
· v), (A-23)

and so on. Using the orthonormality and right-handedness the new normal
simplifies to

n(1 + h(a2 + b1)) − h(bnu1 + anu2). (A-24)

The first term changes the normal in the direction of the normal and can be
ignored (more specifically, if we renormalize the new n to be unit length, this
term disappears). Thus we are left with

n − h
(

u1(u1
· ∇)(v · n) + u2(u2

· ∇)(v · n)
)

. (A-25)

This expression enters the integral as V · n which will become

V · n − h
(

(V 1
· ∇)(v · n) + (V 2

· ∇)(v · n)
)

, (A-26)

using V · ui = V i. We almost have (V · ∇)(v · n) except for (Vn · ∇)(v · n), but
this latter part is the change in normal in its own direction, which is zero to
order h. Finally, combining both contributions to the change in dA we have

(1 + h(∇ · v)(V · n) − h(V · ∇)(v · n))dA. (A-27)

The term corresponding to 1dA will have no h dependence so in the limit
h → 0 the integral will vanish. The term on the right will combine with all our
other contributions to give

h ((v · ∇)V − (V · ∇)v + (∇ · v)V ) · dA, (A-28)

and all this is left is some simplification. We will use an identity to remove the
first two ‘convective derivatives’:

(B · ∇)A − (A · ∇)B = ∇× (A × B) − A(∇ · B) + B(∇ · A), (A-29)

with A = V and B = v, which gives

h (∇× (V × v) + (∇ · V )v) · dA, (A-30)

and the integral becomes

lim
h→0

∫

S(t+h)

h

h
(∇× (V × v) + (∇ · V )v) · dA (A-31)

=

∫

S(t+h)

(∇× (V × v) + (∇ · V )v) · dA, (A-32)

so, finally, putting back in the term with the time partial derivative we get

d

dt

∫

S(t)

V · dA =

∫

S(t)

(

∂ V

∂ t
+ (∇ · V )v −∇× (v × V )

)

dA, (A-33)

as promised.
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