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1 Introduction

Differential equations are ubiquitous in physics and therefore it is imperative to
have methods of solving them. There exist general theories for solving equations
of the type considered here, but such theories are beyond the freshman level
where one typically first encounters them. Thus, the solutions are simply stated
and student gains little understanding.

The solution presented here solves the damped harmonic oscillator using
elementary methods and a little sleight of hand. A little familiarity with complex
analysis is needed at one point, but otherwise everything is elementary calculus.

2 Under Damped Case

Newton’s Law for a spring system with linear damping reads

−kx − bv = ma,

for a block of mass m attached to a spring of constant k with damping coefficient
b. Using the definitions of velocity and acceleration we can write this as the
differential equation

d2x

dt2
+

b

m

dx

dt
+

k

m
x = 0,

which we will write as
{

d2

dt2
+

b

m

d

dt
+

k

m

}

x = 0,

by factoring out the x.
Enter the sleight of hand. We can think of the expression on the left hand side

as a polynomial in the ‘variable’ d/dt. We proceed by making the substitution
y = d/dt and then completing the square

y2 +
b

m
y +

k

m
= y2 + 2

(

b

2m

)

+

(

b

2m

)2

−

(

b

2m

)2

+
k

m

=

(

y +
b

2m

)2

+
k

m
−

(

b

2m

)2

.
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So now our differential equation reads

{

(

d

dt
+

b

2m

)2

+ ω2

}

x = 0,

where we have set

ω2 =
k

m
−

(

b

2m

)2

.

We are assuming here that ω2 > 0.
Now we we just move one term to the other side to get

(

d

dt
+

b

2m

)2

x = −ω2x,

and we take the square root of this expression to get

(

d

dt
+

b

2m

)

x = ±iωx.

Note that we now have two first order equations to solve (one for each sign).
We seek solutions to the equations

dx

dt
=

(

−
b

2m
± iω

)

x,

which have the obvious solutions

x = exp

(

−
b

2m
± iω

)

t

= exp

(

−
b

2m
t

)

exp (±iωt)

= exp

(

−
b

2m
t

)

(

cos(ωt) ± i sin(ωt)
)

.

Thus our two solutions are (using Euler’s formula)

x1 = A1 exp

(

−
b

2m
t

)

(

cos(ωt) + i sin(ωt)
)

,

x2 = A2 exp

(

−
b

2m
t

)

(

cos(ωt) − i sin(ωt)
)

,

and our total solution (x1 + x2) can be written

x = exp

(

−
b

2m
t

)

(

(A1 + A2) cos(ωt) + i(A1 − A2) sin(ωt)
)

.
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Now, we need to choose A1 and A2 so that we get a real-valued solution,
that is

A1 + A2 is real, and

A1 − A2 is imaginary.

This condition has the effect of taking us from four unknown quantities (the real
and imaginary part of each A) to just two, which is the appropriate number for
a second order equation. Our solution is now

x = exp

(

−
b

2m
t

)

(

B cos(ωt) + C sin(ωt)
)

,

which is the general form of the solution representing damped oscillations, and
we have

ω =

√

k

m
−

(

b

2m

)2

.

3 Critically Damped Case

Suppose we have
k

m
=

b

2m
,

so that ω2 = 0. Then our equation takes the form

(

d

dt
+

b

2m

)2

x = 0.

Then taking the square root gives the equation

dx

dt
= −

b

2m
x,

which has the solution

x = A exp

(

−
b

2m
t

)

,

representing an exponential relaxation without any oscillations.
But we’re not done yet! We must have two solutions since our original

equation was of second order. We know that

(
d

dt
+

b

2m
)x1 = 0,

with x1 the solution we know. But this is all we need to find the other solution.
The full equation for the second solution is

(
d

dt
+

b

2m
)

{

(
d

dt
+

b

2m
)x2

}

= 0,
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which is satisfied if the expression in the brackets is equal to x1! Thus we need
to solve

(
d

dt
+

b

2m
)x2 = A exp

(

−
b

2m
t

)

.

The most reasonable thing to try is a product solution

x2 = f · A exp

(

−
b

2m
t

)

.

The equation simplifies enormously, leaving just

df

dt
= 1,

which has the trivial solution
f = t + C,

and thus the full solution is

x = (At + B) exp

(

−
b

2m
t

)

,

where we defined B = AC.

4 Over Damped Case

This time suppose we have

k

m
<

(

b

2m

)2

.

Then we rewrite our equation as

{

(

d

dt
+

b

2m

)2

− ω2

}

x = 0,

where we now have set

ω2 =

(

b

2m

)2

−
k

m
> 0.

Then upon square rooting our equation we obtain

(

d

dt
+

b

2m

)

x = ±ωx,

which is a real equation. The differential equation to solve is now

dx

dt
=

(

−
b

2m
± ω

)

x,
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which has the solutions

x1 = A1 exp

(

−
b

2m
+ ω

)

t,

x2 = A2 exp

(

−
b

2m
− ω

)

t,

both representing a damped motion without oscillations. As always, determine
A1 and A2 by the initial conditions.
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