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1 Introduction

The concept of a field is central to both classical and quantum physics, although
the respective notions of field are very different. A classical field is an object
that transforms under the Poincaré group (scalar, vector, tensor, ...) and is
constrained to be a solution of a particular differential equation. On the other
hand, a quantum field is an arbitrary linear superposition of basis states in a
Hilbert space. A quantum field does not obey a constraining equation since all
states are physical and accessible. The classical description apparently allows
for unphysical states which the differential equations are designed to suppress.
That the quantum description is fundamental suggests that field equations are
not arbitrary, but are determined by the quantum nature of the field. Our task
is to demonstrate this explicitly in the case of the electromagnetic field.

2 The Electromagnetic Field

The classical electromagnetic field is described by a pair of 3-vector fields, E

and B, (or a single anti-symmetric second rank tensor) which are functions of
space and time. The field therefore has a total of 2 · 3 = 6 degrees of freedom
at every point. It is more convenient to take the Fourier transform of the fields
and consider them as functions of momentum rather than position; thus the
electromagnetic field has six degrees of freedom per 4-momentum.

On the other hand, quantum mechanics describes the electromagnetic field
as a massless spin-1 field (arbitrary superposition of photon states). Since a
massless particle has no rest frame, there are only two choices for the spin - to
be aligned with or against the direction of motion. These yields two independent
‘helicity’ states per 4-momentum. We see that the classical description has four
superfluous states per 4-momentum. We will see that it is the role of the Maxwell
equations to eliminate these spurious degrees of freedom. This in effect explains
why the Maxwell equations have the form they do.
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3 The Poincaré Group

The invariance group of Minkowski space-time (special relativity) is the Poincaré
or inhomogeneous Lorentz group, IO(1, 3). The reason is as follows. The
Minkowski metric η is indefinite with signature 1,3:

η =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

The linear transformations that preserve this metric are determined by the
preservation of inner products of 4-vectors,

u · v = utηv = (Λu)tη(λv) = ut
(
ΛtηΛ

)
v,

so that we must have η = ΛtηΛ. Since these matrices preserve a metric with
signature 1,3 it is named O(1, 3) (generalized orthogonal group1), otherwise
known as the Lorentz group.

In addition to rotations and boosts (pure Lorentz transformations), this
group also includes the two discrete operations of time reversal T and parity
P, both of which have negative determinant. If we restrict the determinant
to be +1 only, this is the special orthogonal group SO(1, 3). This restricts T

and P to occur in the combination T P, since each has negative determinant.
We can further suppress these operations completely and the result is called the
proper orthochronous Lorentz group, SO+(1, 3). This group is connected (every
group element may be reached from any other by a continuous path) and will
be the primary object of our investigations. The groups O(1, 3) and SO(1, 3)
are not connected since one cannot continuously change from det +1 to −1 or
continuously reverse the direction of time.

Since all these transformations are linear they preserve the origin and are
called homogeneous. The laws of physics are also believed to be invariant un-
der translations of spacetime (conservation of momentum and energy). If we
allow translations of the origin we obtain affine or inhomogeneous transforma-
tions. The full symmetric group is the Lorentz group plus translation and is
IO(1, 3), or the Poincaré group. We will be interested in ISO+(1, 3), the proper
orthochronous Poincaré group. In a slight abuse of notation, we will refer to
ISO+(1, 3) as the Poincaré group hereafter.

We will represent an element of IO(1, 3) as a pair (Λ, a) consisting of a
homogeneous Lorentz transformation Λ and a displacement 4-vector a. A matrix
is always a linear (homogeneous) transformation so one may doubt the ability
to represent an inhomogeneous transformation as a matrix. However, there is a
standard trick for doing this by adding on an “extra dimension”. The Lorentz
transformation is a 4 × 4 matrix and we may represent the inhomogeneous

1Just as the usual orthogonal group O(3) leaves the standard Euclidean metric in 3-
dimensions invariant.
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transformation as a 5 × 5 matrix as

(Λ, a)v =

(
Λ a
0 1

)(
v
1

)

=

(
Λv + a

1

)

.

The extra 1 is just along for the ride.
We now consider the product of two transformations: (Λ1, a1) followed by

(Λ2, a2)

(Λ2, a2)(Λ1, a1) =

(
Λ2 a2

0 1

)(
Λ1 a1

0 1

)

=

(
Λ2Λ1 Λ2a1 + a2

0 1

)

= (Λ2Λ1,Λ2a1 + a2),

which is quite understandable. In particular, we have (I, a)(Λ, 0) = (Λ, a), and
on the other hand (Λ, 0)(I, b) = (Λ,Λb). Now, if we set Λb = a (or a = Λ−1b)
then we get

(I, a)(Λ, 0) = (Λ, a) = (Λ, 0)(I,Λ−1a),

which will be important later on.

4 Representations

While we usually think of a group as a particular collection of matrices, this
is really a representation of a group rather than the group itself, which is an
abstract object. A representation of a group G is a mapping of G into a set
of matrices which preserves group multiplication. In other words, if g and
h are group elements and M(g) is the matrix representing g, then for M to
furnish a representation we must have M(gh) = M(g)M(h), where we have
group multiplication on the left and matrix multiplication on the right. It is
important to make this distinction between groups and their representations
since groups have many different representations and it is through these various
representations that groups enter into physics.

This observation is of central importance for field theories. If a physical
theory is invariant under some group, the fields must transform under some
respresentation of that group. For exmaple, if a theory is rotationally invariant,
then the new state obtained by rotating some intitial state must be express-
ible as some linear combination of basis states. Different fields transform under
different representations, so knowing the possible representations tells us some-
thing about the possible fields. Since physical theories are invariant under the
Poincaré group we will study its representations.

A few familiar examples are the transformation rules for scalars and ten-
sors. For a scalar φ → 1φ. That is, it transforms trivially under a group G, or
transforms under the trivial representation (everything in the group goes to 1).
Another example is a tensor, T ab → Λc

aΛd
bT

ab, which transforms under the
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direct product representation (each Λ is matrix representing a Lorentz trans-
formation). However, there are more general representations than these, and
determining all representations of a group is generally a very difficult problem.

Two constraints on this problem must be mentioned. The representations we
are after are for the quantum fields. Since inner products between states corre-
spond to certain obervables which must be invariant, we require representation
matrices to preserve them:

〈ψ′|ψ′〉 = 〈ψ|U†U |ψ〉 = 〈ψ|ψ〉 → U†U = 1,

which requires the matrices to by unitary. Second, we requires that the repre-
sentations be irreducible. This requires some comment.

Irreducibility roughly means that the representation cannot be broken down
into smaller simpler parts. More specifically, if the representation (matrices)
acts on a vector space V then the operators leave no non-trivial subspace of
V invariant. If it did leave a subspace U invariant it would leave its orthogo-
nal complement invariant2 as well and we could simplify the representation by
looking at U and U⊥ separately. As matrices the representation would look like

Γ(g) =

(
Γ1(g) 0

0 Γ2(g)

)

,

which is completely reducible in the matrix sense. We have two different repre-
sentations stuck together in a trivial way - the subspaces U and U⊥ are com-
pletely independent. Since one can always put representations together in this
trivial way, it makes sense to restrict attention to those that cannot be so triv-
ially decomposed.

The irreducible representations are the simplest ones, and since any (unitary)
representation is either fully reducible or irreducible, all representations are
constructable from the irreducible ones. We may think of elementary particles
as corresponding to irreducible representations and composite particles to the
reducible ones. In summary, our goal is the enumeration of all the unitary
irreducible representations (UIR) of the Poincaré group and then determining
which belongs to the electromagnetic field.

4.1 The Rotation Group

A particular representation problem is routinely solved in quantum mechanics
in the theory of spin and angular momentum. There the problem was to find
how quantum states behaved under rotations, that is, the group SO(3). What
one finds is that the representations are labeled by j, which is an integer or half-
integer and corresponds to the total spin, which is quantized. More specifically,
there was a vector space of dimension 2j+1 with basis states (vectors)

∣
∣j
m

〉
with

|m| ≤ j.

2This conclusion requires a metric and is not true for arbitrary non-unitary representations.
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In an angular momentum j representation, a rotation for angle ||α|| about
the axis α is represented by the matrix

Dj(α) = exp
{

−J
(j) · α

}

,

where J
(j) is the appropriate collection of angular momentum operators. When

j = 1/2 they are i/2 times the Pauli matrices. We say that the matrices Dj

furnish a (2j + 1-dimensional) representation of SO(3) and that the states
∣
∣j
m

〉

transform under the Dj representation. We have

Dj
∣
∣j
m

〉
=

∣
∣
∣
j
m′

〉

Dj
mm′ ,

which expresses the image of the state
∣
∣j
m

〉
under the rotation as a linear com-

bination of other basis states m′ for fixed j.
Of course, not all these states are actually representations of SO(3). For j an

integer these states do correspond to SO(3) and may be realized by the spher-
ical harmonics. The spherical harmonics Y l

m(θ, φ) transform under the unitary
irreducible representations of SO(3). Note then that the usual representation of
SO(3) as 3×3 matrices is reducible. The half-integral j (along with the integral
j) are representations of SU(2), the universal cover of SO(3).

Any object which transforms according to integral j is known as a spherical
tensor of rank j. This corresponds to the usual scalar and vector in R

3 for
j = 0, 1. A usual tensor of rank 2 has 1+3+5 = 9 components and is reducible.
It may be regarded as the sum of two vectors (spin 1) and breaks up into a
subspaces of spin 0, 1, and 2 with 1,3, and 5 components respectively. These
three pieces are the trace, the antisymmetric part, and the traceless symmetric
part. This decomposition is accomplished by the identity

Tij =
1

3
T k

k δij +
1

2
(Tij − Tji) +

1

2

(

Tij + Tji −
2

3
T k

k δij

)

.

The factor of 1/3 compensates for the fact that δij has trace three. In the
same way an arbitrary manifestly covariant rank n Euclidean tensor reduces
into representations with j = 0, 1, . . . , n. For example, rank 3 is obtained from
coupling three spin 1’s. This is accomplished by

1 + (1 + 1) = 1 + (0, 1, 2) = (1), (0, 1, 2), (1, 2, 3),

which yields 1 spin 0, 3 spin 1, 2 spin 2, and 1 spin 3 for 1+3 · 3+5 · 2+7 = 27
components.

4.2 Abelian Groups

The Poincaré group contains the inhomogeneous space-time translations which
form an abelian (commutative) subgroup. We will discuss the representations
of such abelian groups here.
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Let Γ be a representation of an abelian group G, a → Γ(a) is the matrix
representative for a. We will first show that if the representation is irreducible
then the vector space on which Γ acts is one-dimensional3. By definition of
commutativity we have Γ(a)Γ(b) = Γ(b)Γ(a). Now, consider Γ(a). This matrix
must have at least one eigenvector |ψa〉 with eigenvalue λa. But then we have

Γ(a)Γ(b) |ψa〉 = Γ(b)Γ(a) |ψa〉
= λaΓ(b) |ψa〉 .

We conclude that for every b, Γ(b) |ψa〉 is an eigenvector of Γ(a) with eigenvalue
λa. Since Γ(c)Γ(b) |ψa〉 = Γ(cb) |ψa〉, this subspace of eigenvectors is invariant.
We know this subspace is not empty, so by irreducibility it must be the whole
space and thus we can write Γ(a) = λaI.

We repeat this procedure for each Γ(b) and corresponding eigenvector |ψb〉.
In this way we conclude that every matrix is diagonal. But then every one-
dimensional subspace is invariant, and this is a contradiction unless the whole
space is one dimensional, which is what we wanted to show.

Since each representation is one dimensional it is a 1× 1 matrix or simply a
complex number a → Γ(a) = exp(ik(a)) for some complex function k. Now we
must determine what k is. We must have (since Γ is a representation)

a+ b→ Γ(a+ b) = eik(a+b)

a+ b→ Γ(a)Γ(b) = eik(a)eik(b) = eik(a)+ik(b),

so that we see that k must be linear, k(a + b) = k(a) + k(b). We can then
write k(a) = kµa

µ = k · a, and represent k as a (complex) 4-vector. Finally, for
unitary representations we must have

1 =
(
eik·a

) (
eik·a

)†
= eia·(k−k∗),

so that kµ must be a real 4-vector. If we label the basis states by |k〉 we have

Γ(a) |k〉 = eik·a |k〉 .

The transformation properties are trivial since every state is an eigenstate. We
conclude that the collection of all UIR of an n parameter abelian (translation)
group is in a one-to-one correspondence with the collection of all real n-vectors
k, which is isomorphic to the vector space R

n.

4.3 Lorentz Group

Next we shall determine the representations of the proper orthochronous Lorentz
Group SO+(1, 3). As we shall see, these representations cannot describe particle
states, but rather fields. If we attempt to copy the procedure for the rotation
group we are led to consider infinitesimal operations Λ = I+M , M small, which

3This is an easy consequence of Schur’s Lemma which we decline to invoke.
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must satisfy ΛtηΛ = η. This equation gives constraints M to obey M tη+ηM =
0. If we write

M =

(
A B
C D

)

,

we have the equation

(
−A Ct

−Bt Dt

)

+

(
−A −B
C D

)

= 0,

which gives the constraints A = 0, Bt = C, and D = −Dt. The most general
form of M is then

M =







0 b1 b2 b3
b1 0 θ3 −θ2
b2 −θ3 0 θ1
b3 θ2 −θ1 0







= θ · J + b · K,

and the infinitesimal operators J and K obey the commutation relates

[Ji, Jj ] = −ǫijkJk

[Ki,Kj ] = +ǫijkJk

[Ji,Kj ] = −ǫijkKk.

The J operators are exactly the angular momentum operators of the rotation
group and obey the same angular momentum commutation relations. The K

operators are the generators of boosts (pure Lorentz transformations). The com-
mutator of two non-collinear boosts gives rise to a rotation, which is the origin
of the Thomas precession. Finally, the commutator of a boost and rotation is a
boost.

Since all operators obey very similar commutation relations, one suspects
that it would be possible to simplify them by making various linear combina-
tions. This is in fact possible. Define the two sets of operators

J
(1) =

1

2
(J − iK)

J
(2) =

1

2
(J + iK) .

One can immediately verify that these operators mutually commute and obey
angular momentum commutation relations:

[

J
(1)
i , J

(1)
j

]

= −ǫijkJ
(1)
k

[

J
(2)
i , J

(2)
j

]

= −ǫijkJ
(2)
k

[

J
(1)
i , J

(2)
j

]

= 0.
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Thus we have have decomposed the operators into two separate angular mo-
mentum subspaces4. But we already know all these representations! We have

J
(1) → Dj and J

(2) → Dj′

with corresponding basis states
∣
∣j
µ

〉
and

∣
∣
∣
j′

µ′

〉

. Since

the two are independent we have the product states and representations

Djj′

= DjDj′

and
∣
∣
∣
jj′

µµ′

〉

=
∣
∣j
µ

〉
∣
∣
∣
j′

µ′

〉

.

An arbitrary Lorentz transformation acting on a basis state will be express-
ible as certain linear combinations of basis states (with same j, j′ values)

Λ
∣
∣
∣
jj′

µµ′

〉

=
∣
∣
∣
jj′

νν′

〉

Djj′

νν′;µµ′ ,

where the linear combinations are the matrix elements

Djj′

νν′;µµ′ =
〈

jj′

νν′

∣
∣
∣ Λ

∣
∣
∣
jj′

µµ′

〉

,

which need to be determined.
The representations of the operators are given as in the case of the rotation

group. We have (since J
(1) and J

(2) commute)

exp(θ · J + b · K) = exp
(

(θ + ib) · J(1) + (θ − ib) · J(2)
)

= exp
(

(θ + ib) · J(1)
)

exp
(

(θ − ib) · J(2)
)

= Dj
(

(θ + ib) · J(1)
)

Dj′

(

(θ − ib) · J(2)
)

.

The operator J = J
(1) +J

(2) gives the total angular momentum under rotations
SO(3) ⊂ SO+(1, 3). This is thus the sum of two angular momentum j and
j′, which breaks up as a Clebsch-Gordon series and includes states of angular
momentum J according to

∣
∣J
M

〉
=

∑

m,m′

〈
j j′

mm′

∣
∣
∣

J
M

〉 ∣
∣j
m

〉
∣
∣
∣
j′

m′

〉

, |j − j′| ≤ J ≤ |j + j′|.

For example, a j = j′ = 1/2 state breaks up into a scalar and a vector under
rotations. This representation corresponds to the E&M 4-vector potential which
is a pair (φ,A) in non-relativistic physics. Only states with j = 0 or j′ = 0
are pure spin states. We will accordingly define two particular pure spin states
of interest, Dj0 = Dj and D0j′

= Dj′

. The E&M field is a spin-1 field, so
that leaves the D10 and D01 representations. When taking representations the
operators J

(i) both go to the appropriate angular momentum matrices which
are anti-Hermitian.

Notice that these representations of the Lorentz group we have constructed
are not unitary5. This is because the angular momentum matrices J (j) are

4As Lie algebras we have so(1, 3) ≃ so(3) ⊕ so(3).
5The Lorentz group is non-compact, and it is a theorem that all representations of a non-

compact semi-simple group are infinite dimensional.
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anti-Hermitian, but their coeffecient has an imaginary part, ib. Thus, there
are no physical states that transform under finite dimensional representations
of the Lorentz group. These representations correspond to fields rather than to
particles, since fields need not preserve an inner product. When we consider the
full Poincaré group we will recover particle states.

As with the rotation group, the manifestly covariant rank n tensors break up
into a sum of irreducibles. The (1, 0) and (0, 1) representations correspond to a
pair of 3-vectors or a single anti-symmetric rank 2 tensor. Either representation
of the E&M field is therefore both irreducible and manifestly covariant under
Lorentz transformations. Analogous remarks are true for other pure spin j
fields.

4.4 The Poincaré Group

In the previous sections we have enumerated the representations of the two
major subgroups (translations and Lorentz transformations) that define the
Poincaré group. We want to use this knowledge to construct the representa-
tions of the Poincaré group itself. We will see that unitary representations are
again possible and correspond to particle states of definite mass and spin.

The most sensible thing to try is direct products6

∣
∣
∣k;

jj′

µµ′

〉

= |k〉
∣
∣
∣
jj′

µµ′

〉

,

and determine the action of the group elements on these states. We will define

the action of (I, a) by acting trivially on the spin states,

(I, a)
∣
∣
∣k;

jj′

µµ′

〉

= eik·a
∣
∣
∣k;

jj′

µµ′

〉

.

Having defined the action of (I, a), the action of (Λ, 0) is determined by the
relation (I, a)(Λ, 0) = (Λ, 0)(I,Λ−1a). Let σ represent the spin labels for brevity.
We have (using the Lorentz invariance of the inner product in the third line)

(I, a)(Λ, 0) |k, σ〉 = (Λ, 0)(I,Λ−1a) |k, σ〉
= eik·Λ−1a(Λ, 0) |k, σ〉
= eiΛk·a(Λ, 0) |k, σ〉 ,

which demonstrates that (Λ, 0) |k, σ〉 is an eigenstate of (I, a) with eigenvalue
exp(iΛk · a), i.e. it must be a linear combination of states |Λk, σ′〉:

(Λ, 0) |k, σ〉 = Mσ′,σ |Λk, σ′〉 ,

for a matrix M to be determined, which satisfies

Mσ′,σ = 〈Λk, σ′|Λ |k, σ〉 .
6This is essentially the method of induced representations. It turns out that all the repre-

sentations of the Poincaré group arise in this manor, but a proof is beyond this article.
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These product states for pure spin j are manifestly covariant under the
Lorentz subgroup, however they are reducible in the Poincaré group! To see
why, note that states with momentum Λk are present in the representation
whenever states with momentum k are present (just apply the transformation
Λ). On the other hand, if a certain value k′ is not of the form Λk, then k and
k′ have no matrix elements between them and this makes the representation
reducible.

Naturally, this brings us to consider time-like, space-like, and null vectors
separately. Since each Λk is in a representation if k is, it suffices to consider a
reference 4-momentum, k0. Let Λ0(k) be a standard pure boost from k0 to k.
Then we have (for an arbitrary Lorentz transformation Λ)

Λ |k, σ〉 = ΛΛ0(k) |k0, σ〉
=

[
Λ0(Λk)Λ

−1
0 (Λk)

]

︸ ︷︷ ︸

1

ΛΛ0(k) |k0, σ〉

= Λ0(Λk)
[
Λ−1

0 (Λk)ΛΛ0(k)
]
|k0, σ〉 .

Note what the bracketed operator, H, on the last line does. We have

k0
Λ0(k)→ k

Λ→ Λk
Λ−1

0
(Λk)→ k0,

so the net effect is to take k0 to itself, i.e. H is an element of the invariance group
of k0, the so-called “little group”. This operation will generally operate non-
trivially on the σ (though Λ0 does not), so we have H |k0, σ〉 = Dσ′,σ |k0, σ

′〉,
and

Λ |k, σ〉 = Dσ′,σ(Λ, k0)Λ0(Λk) |k0, σ
′〉 ,

where we have to determine the matrix elements Dσ′,σ. The problem of con-
structing the representations will be simplified once we identify the little group.

4.4.1 Massive Particles

First, consider the time-like case, −k · k = m2 > 0. A good choice of standard
4-momentum is the rest frame, k0 = (±1, 0, 0, 0), where we have two choices
related by time reversal. Now, any boost introduces time-dilation and changes
the time component by kt → γkt for any k. Thus only rotations are allowed
(γ = 1). However, it is obvious that all rotations leave invariant the unit time-
like vector since it has no spatial part. Hence the little group of k0 is SO(3),
the rotation group in 3-space.

Finding the representations for massive particles is now reduced to finding
the representations of SO(3), which is equivalent to angular momentum states
for various spin. We conclude that massive particles are the states

∣
∣k, jm

〉
of

4-momentum k and spin j, subject to the constraint −k · k = m2 > 0. Since
the representations of SO(3) are unitary, we see that we have obtained unitary
irreducible particle states. We do not pursue massive states any further here.
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4.4.2 Massless Particles

The case of primary interest is when k is null, k · k = 0. There is no rest frame,
so the next best thing is to pick a definite propagation direction, say z, so that
k0 = (±1, 0, 0, 1). As before there are two choices related by time reversal. The
little group in less obvious in this case.

It is at least obvious that any rotation about the z-axis leaves k0 invariant
since such a transformation preserves both the z- and t-axis. These operations
are the most important in what follows. However, it is not obvious is whether
there are any other transformations. To determine the full little group, we pass
to infinitesimal operations. We have

Λk0 = (I +M)k0 = k0 →Mk0 = 0,

so that

M =







0 b1 b2 b3
b1 0 θ3 −θ2
b2 −θ3 0 θ1
b3 θ2 −θ1 0













±1
0
0
1







=







b3
−θ2 ± b1
θ1 ± b2
±b3







= 0,

which gives the relations among the parameters. We notice that the two sets of
matrices

M =







0 ±θ2 ∓θ1 0
±θ2 0 θ3 −θ2
∓θ1 −θ3 0 θ1
0 θ2 −θ1 0







↔





0 θ3 −θ2
−θ3 0 θ1
0 0 0



 ,

have the same commutation relations. The latter set is easily identifiable as
infinitesimal operations of ISO(2), the group of rotations and translation in
the Euclidean plane. The rotation subgroup here correspondence to the z-axis
rotations we already determined should be in the little group. The little group
can also be determined directly by examining the group operations, but this is
much more algebraicly demanding.

Now, finding the representations of ISO(2) is quite similar to finding those
of ISO+(1, 3). We have a 2-dimensional Abelian subgroup of translations that
gives rise to basis states |κ〉. There are the two cases κ · κ > 0 and κ · κ = 0
(that is, κ = 0). If κ is a state in an UIR, so is κ′ = R(θ)κ since κ′ · κ′ = κ · κ,
where R(θ) is a rotation by angle θ, i.e. an element of SO(2).

The first case gives rise to an infinite number of internal degrees of freedom,
referred to as either “continuous” or “infinite” spin. While there are theories
that incorporate these representations, there are no known particles with such
internal continuous degrees of freedom, so we will ignore them7.

This leaves κ = 0. The little group in this case is the 2-dimensional rotation
group SO(2) (rotations preserve the origin). This an Abelian group so the UIR
are one-dimensional and of the form

Γ(φ) |ξ〉 = eiφξ |ξ〉 ,
7It is an important and deep question to ask why such representation do not seem to exist.
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where φ is the rotation angle and ξ ∈ R labels the state. Since φ and φ + 2π
are the same rotation, their representations must be the same, which requires
that ξ be an integer. However, just as SO(3) leads to half-spin representations
(representations of SU(2)), we expect half-spin representations of SO(2) as well
(representations of U(1)). Thus we allow ξ to be an integer or half-integer8. In
this case φ and φ+ 4π are the same rotation. Of course, these representations
are unitary.

Thus we have for a little-group operation H

H |ξ〉 = eiφξ |ξ〉 ,

and our little group representations are simply

Dξ′,ξ = eiφξδξ′ξ.

This index has a natural interpretation as helicity - the spin along (or against)
direction of propagation. This is because 1) it is a spin index and 2) it is left
invariant by rotations about the direction of motion (about the z-axis). We
conclude that the UIR of massless particles are the states |k, ξ〉, where k is a
null 4-momentum and ξ is a integer of half-integer helicity index. Any physical
state is an arbitrary linear superposition of these basis states. Next we shall see
why the covariant states are not all allowable - they include non-helicity states,
and only helicity states correspond to particle states.

5 Maxwell’s Equations

We are now nearly ready to demonstrate the origin of Maxwell’s equations. We
will fix k0 to be the forward time vector. Note that we have described the UIR
of massless particles in terms of a helicity index. We want to relate these states
to the manifestly covariant (classical) representations of the Poincaré group.
Consider the action of a little group operation in the Dj0 representation, using
the relations b1 = θ2 and b2 = −θ1:

exp [(θ − ib)J] = exp [(θ3J3 + (θ1 − iθ2)J1 + (θ2 + iθ1)J2]

= exp [(θ3J3 + (θ1 − iθ2)(J1 + iJ2)]

= exp [(θ3J3 + (θ1 − iθ2)(J+)]

=








eijθ3 ∗ · · · ∗
0 ei(j−1)θ3 · · · ∗
...

...
. . .

...
0 0 · · · e−ijθ3








In the spin basis, the operator J3 is diagonal with eigenvalues the angular
momentum m-values and exponentiates onto the diagonal while the shift up

8This makes sense since we are essentially finding the representations of the complexifica-
tion sl(2, C) ≃ so

+(1, 3)C, just as su(2) ≃ so(3)C.
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operator J+ is upper triangular and exponentiates into the upper triangular
part. The details of the ∗ stuff is unimportant. While most of the states

transform in a complex manor, for the
∣
∣
∣
j0
j0

〉

state we have simply

Dj0 [(θ − ib)J]
∣
∣
∣
j0
j0

〉

= eijθ3

∣
∣
∣
j0
j0

〉

,

since it sees only the 1-1 matrix element. This state is therefore an eigenstate
and has the same transformation properties as the helicity state |ξ〉 for j = ξ > 0
if we identify θ3 = φ.

An analogous calculation in the D0j representation gives

exp [(θ + ib)J] = exp [(θ3J3 + (θ1 + iθ2)(J−)]

=








eij′θ3 0 · · · 0

∗ ei(j′−1)θ3 · · · 0
...

...
. . .

...

∗ ∗ · · · e−ij′θ3







.

This time the operator J− appears and exponentiates into the lower triangular

part. In this case the only simply transforming state is
∣
∣
∣
0 j′

0−j′

〉

for which we get

D0j [(θ + ib)J]
∣
∣
∣
0 j′

0−j′

〉

= e−ijθ3

∣
∣
∣
0 j′

0−j′

〉

,

which transforms the same as the helicity state |ξ〉 for −j′ = ξ < 0.
In summary we have the physical states

|k, ξ〉 =
∣
∣
∣k,

j
j
0
0

〉

for ξ > 0, and |k, ξ〉 =
∣
∣
∣k, 00

j′

−j′

〉

for ξ < 0,

Any other non-helicity spin state in the covariant representation is therefore
unphysical and must be suppressed. For the Dj0 representations this requires
eliminating all j,m states with m 6= j. Another way of saying this is that any
physical state |ψ〉 should have no amplitudes in unallowed basis states, that is

〈
k, jm

0
0

∣
∣ψ

〉
= 0, and

〈

k, 00
j′

−m′

∣
∣
∣ψ

〉

= 0,

when m 6= j and m′ 6= j′ for some physical state |ψ〉.
We seek a way to eliminate these states at any 4-momentum. We can obtain

the helicity through the operator J · k̂, where k̂ is the unit vector of the spatial
part of k. This operators gives the projection of angular momentum onto the
direction of motion. If this is not j we want the amplitude to vanish, so a simple
way to enforce this condition is

{

J · k̂ − jI
} 〈

k, jm
0
0

∣
∣ψ

〉
= 0,

where I is the unit matrix. Notice that the operator is identically zero for a
helicity state, so a physical state can have an arbitrary amplitude there. On
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the other hand, a non helicity amplitude is forced to vanish. Note that since
k · k = 0 we have ||k||2 = k2

1 + k2
2 + k2

3 = k2
t , so we may rewrite our condition as

{J · k − jIkt}
〈
k, jm

0
0

∣
∣ψ

〉
= 0,

where we multiplied through by ||k||. The analogous condition for the other
helicity differs only in the sign of the eigenvalue j,

{J · k + jIkt}
〈

k, 00
j′

m′

∣
∣
∣ψ

〉

= 0.

Finally, we obtain our equations by taking the the Fourier transform to
return to spacetime coordinates,

F {J · k − jIkt}F
〈
k, jm

0
0

∣
∣ψ

〉
= 0.

Define the (complex) fields in spacetime by

ψj
m(x) = F

〈
k, jm

0
0

∣
∣ψ

〉
= 〈x| k〉

〈
k, jm

0
0

∣
∣ψ

〉
.

The Fourier transform of the operator is

F {J · k − jIkt} = −i
{

J · ∇ − j
∂

∂t
I

}

.

For a spin-1 field we set j = 1 and the angular momentum matrices are (in
the 1,0,-1 basis)

J1 =
i√
2





0 1 0
1 0 1
0 1 0



 , J2 =
1√
2





0 1 0
−1 0 1
0 −1 0



 , J3 = i





1 0 0
0 0 0
0 0 −1



 .

Using these spin matrices the constraint equation is





∂3 − ∂t ∂−1 0
∂+1 −∂t ∂−1

0 ∂+1 −∂3 − ∂t









ψ1

ψ0

ψ−1



 = 0,

where ∂±1 = ∓(∂x ± i∂y)/
√

2. After making a similarity transformation to a
Cartesian basis the angular momentum matrices become

Jx =





0 0 0
0 0 1
0 −1 0



 , Jy =





0 0 −1
0 0 0
1 0 0



 , Jz =





0 1 0
−1 0 0
0 0 0



 .

and the constraint becomes




−i∂t ∂z −∂y

−∂z −i∂t ∂x

∂y −∂x −i∂t









ψx

ψy

ψz



 = 0,
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where ψ0 = ψz and ψ±1 = ∓(ψx ± iψy)/
√

2. Upon contemplation of the matrix
product one sees that this may be written as

∇× ψ = −i ∂
∂t
ψ,

where we write ψ = (ψx, ψy, ψz). The negative helicity solution is analogous

∇× φ̄ = +i
∂

∂t
φ̄,

where φj
m are the complex fields corresponding to negative helicity states. By

considing time reversal one can show that ψ∗ = φ.
If we separate out the real and complex parts by setting ψ = B + iE we

obtain (after multiplying through by i)

∇× (E − iB) = −i ∂
∂t

(E − iB)

∇× (E + iB) = +i
∂

∂t
(E + iB) ,

which are the equations of left- and right- circularly polarized light, respectively.
Taking the real and imaginary parts of each equation gives the same set of two
equations

∇× E = −∂B
∂t

∇× B = +
∂E

∂t
,

which are the sourceless Faraday and Ampère-Maxwell laws respectively.
What about the other two Maxwell equations? Recall that in the little-vector

frame the only non-vanishing component of the field was ψ1 = (−ψx + iψy)/
√

2.
Since the little vector was k0 = (1, 0, 0, 1), we see that ψ1 is orthogonal to the
spatial vector k = (0, 0, 1), k ·ψ1 = 0. We also have k ·ψ = 0 as 4-vectors, which
is manifestly invariant. Taking the Fourier transform we obtain

k · ψ = 0 → ∇ · ψ(x) = ∇ · (B + iE) = 0.

Upon taking real and imaginary parts we have the sourceless Gauß laws. These
two equations are rather auxiliary and arise from taking spatial vector represen-
tations of spin states rather than remaining in the spin representations. Indeed,
half-spin fields do not have such representations and thus lack these auxiliary
equations.

Notice that since we have null vectors, k · k = 0, so any physical state obeys
{k · k} 〈k, σ|ψ〉 = 0, which upon Fourier Transform yields the Klein-Gordon
equation, �

2ψ = 0, otherwise known as the spin-1 wave equation.
It may seem arbitrary that we wrote ψ = B + iE and in some sense it

is. In the absence of sources the phase transformation B + iE → eiϕ(B + iE)
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leaves the Maxwell equations invariant. Only in the presence of sources is this
transformation eliminated (unless the sources are similarly transformed). One
can decide between B + iE and the complex conjugate B − iE by the signs in
the resulting equations.

6 Conclusion

In the previous section we succeeded in our goal of deriving the Maxwell Equa-
tions from quantum mechanics through group theoretical means. These equa-
tions are necessary to remove the superfluous states that exist in a classical
covariant description of a field. The quantum fields obey no constraints are
simply given as arbitrary superpositions of basis states. These states are simply
given by construction the UIR of the invariance group of physics, the Poincaré
group.

A Some Other Spins

Though our main purpose was to derive the Maxwell equations, the apparatus
is in place to derive equations for any massless representation of the Ponicaré
group. This is done by writing the constraint equation

−i
{

J · ∇ − j
∂

∂t
I

}

ψj
m = 0,

for the appropriate spin representation j. We list here some common repre-
sentations and the fields they represent, but do not derive the corresponding
equations.

Table 1: Some UIR of the Lorentz group.
(j, j′) field type (example)
(0, 0) scalar (inflaton)

(1/2, 0) left-handed Weyl spinor (neutrinos)
(0, 1/2) right-handed Weyl spinor (anti-neutrinos)

(1/2, 0) ⊕ (0, 1/2) Dirac spinor (?)
(1/2, 1/2) four-vector (E&M vector potential)

(1, 0) ⊕ (0, 1) tensor (E&M field)
(1, 1) spin 2 field (metric tensor)

(2, 0) ⊕ (0, 2) tensor (linearized gravitational field)

The total spin is j + j′. A direct sum state (j, 0) ⊕ (0, j) has indefinite
parity. I am unaware of any massless Dirac spinor field in nature. A massive
(1/2, 0)⊕(0, 1/2) Dirac state would correspond to the leptons. The identification
of neutrinos with massless Weyl spinors is according to electroweak theory in the
standard model and is now known to be false. Neutrinos are actually massive
Dirac spinors.
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