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Abstract

The Master Analytic Representation for the root space A1 is con-
structed. This gives all of the unitary irreducible representations of the
two real forms of this root space, su(2) and su(1, 1). This procedure is
carried out in a generalization of Schwinger’s presentation for angular
momentum.

Consider the lie algebra su(2). In the defining representation, this algebra
consists of all traceless, anti-Hermitian complex matrices. An arbitrary element
thus has the form

su(2)
def→ i

2

(

a3 a1 − ia2

a1 + ia2 −a3

)

, (1)

where ai ∈ R. A lie algebra can be placed in a canonical form by considering
the eigen-equation adZX = λX, with characteristic equation ‖adZ − λI‖ = 0.
For su(2) this eigen-equation is

λ2 + φ2(a) = 0, (2)

where φ2(a) = 〈a, a〉. This equation has no solutions over R, so we are led to
consider the complexification of su(2), which is su(2)C ≃ sl(2, C).

The complexification of an algebra g is the algebra g + ig. The lie alge-
bra sl(2, C) consists of all traceless complex matrices. Such a matrix can be
decomposed uniquely as

X =
X − X†

2
+

X + X†

2
(3)

=
X − X†

2
+ i

X + X†

2i
(4)

= X1 + iX2, (5)

which is a sum of two anti-Hermitian traceless matrices, that is elements of
su(2).

Having complexified the algebra, we may solve for the roots as λ = ±i||a||,
which gives one non-zero root and its negative. We note that the secular equa-
tion had one independent coefficient, φ2, so the algebra has rank l = 1, thus
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e1−e1

Figure 1: A1 root space diagram.

there is one zero root, which is missing since we used def rather than reg. The
root space for sl(2, C) is shown in Fig. 1.

The eigenspaces spanned by H,E±1 are found to be

H = Xa/
√

2 (6)

E1 = Xb/
√

2 (7)

E−1 = Xc/
√

2, (8)

where the X’s are the generators in the defining representation of sl(2, C),

sl(2, C)
def→

(

a b
c −a

)

. (9)

In the eigenspace decomposition, the Cartan-Killing inner product has the
form





1 0 0
0 0 1
0 1 0





H
E1

E−1

, (10)

which can be diagonalized by introducing the linear combinations E± = (E1 ±
E−1)/

√
2,





1 0 0
0 1 0
0 0 −1





H
E+

E−

. (11)

The matrices E± are represented by

E± =
1√
2

(

0 1
±1 0

)

. (12)

We will now proceed to enumerate the real forms of sl(2, C), or of the root
space A1. These are all the sub-algebras h of g such that hC = h+ih = sl(2, C) =
g. Such a sub-algebra obviously satisfies the following commutation relations:

[h, h] ⊂ h (13)

[h, ih] ⊂ ih (14)

[ih, ih] ⊂ h. (15)

The compact form of g is given by taking

h = spanR(iH ⊕ iE+ ⊕ E−). (16)
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Since these generators satisfy the commutation relations

[H,E±] = E∓ (17)

[E±, E∓] = ∓H, (18)

it is easily checked that h closes under commutation and is in fact a sub-algebra
(which is always the case for the compact form). The Cartan-Killing form is
now negative definite, hence this sub-algebra is compact. The basis vectors are

iH =
i√
2

(

1 0
0 −1

)

=
√

2X3 (19)

iE+ =
i√
2

(

0 1
1 0

)

=
√

2X1 (20)

E− =
1√
2

(

0 1
−1 0

)

=
√

2X2, (21)

where the Xi are the generators of the defining representation of su(2), hence
the compact real form of sl(2, C) is su(2).

Having found the compact form, we can proceed to enumerate the remaining
real forms by decomposing the compact form as g = h ⊕ p, where h and p obey
the same commutation relations as h and ih in eqns 13-15. In particular h

must form a sub-algebra of g. In the present case it is simple enough to check
the possibilities. One choice is h = H and p = E+ ⊕ E− (meaning the span
of the these elements). We obtain a real form by the analytic continuation
g = h + p → h + ip = g′. These new basis vectors are then

iH =
i√
2

(

1 0
0 −1

)

=
√

2X3 (22)

i2E+ =
−1√

2

(

0 1
1 0

)

=
√

2iX1 (23)

iE− =
i√
2

(

0 1
−1 0

)

=
√

2iX2, (24)

which are the generators of su(1, 1), as an element in the algebra is written as

1

2

(

ia3 −a1 + ia2

−a1 − ia2 −ia3

)

(25)

Now, suppose E− ∈ h. Since [E−,H] ∈ E− we must have H ∈ h. Now, since
[E+, E−] ∈ H, we must have E− ∈ h as well, but then p = {0}. Similarly, if
start with just E+ ∈ h we must first include H and then E−. Thus we conclude
that the only real forms of sl(2, C) are su(2) and su(1, 1).

Now that we have the two real forms we will proceed to construct the mas-
ter analytic representation for A1, which gives all of the unitary irreducible
representations (UIR) of its real forms. This construction can be seen as an ex-
tension of Schwinger’s representation for angular momentum in terms of bilinear
products of two mode boson creation and annihilation operators.
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We will now write Ji for the su(2) generators rather than Xi used previously
(actually, we have iJi = Xi). The generators for su(1, 1) are related as in eqns
22-24 by K1,2 = iJ1,2 and K3 = J3. It is convenient to introduce the linear
combinations J± = J1± iJ2 and K± = K1± iK2 which satisfy the commutation
relations

[J3, J±] = ±J± [K3,K±] = ±K± (26)

[J+, J−] = 2J3 [K+,K−] = −2K3 (27)

The two mode bilinear boson algebra consists of the bilinear product of
creation an annihilation operators a†

iaj , i, j ∈ {1, 2}. The basis elements of
each mode are |ni〉, and the two mode bases are |ni〉 ⊗ |nj〉 ≡ |ni, nj〉. The
creation and annihilation operators for mode i act on basis states as

a†
i |ni〉 =

√
ni + 1 |ni + 1〉 , ai |ni〉 =

√
ni |ni − 1〉 . (28)

It is evident that if we make the identifications

1

2
(a†

1a1 − a†
2a2) = J3 = K3 (29)

a†
1a2 = J+ = −iK+ (30)

a†
2a1 = J− = −iK−, (31)

then we have algebra isomorphisms, as all commutators are identically satisfied.
We will also identify basis states according to

∣

∣

∣

∣

j
m

〉

= |n1, n2〉 , (32)

with j = (n1 + n2)/2 and m = (n1 − n2)/2.
In their defining representations, the lie algebras su(2) and su(1, 1) exponen-

tiate onto the groups SU(2) and SU(1, 1), both of which have a single-valuedness
condition for 4π rotations around the z-axis, that is exp iφ(±1/2) = 1 and
φ = 4πn. Since this representation is faithful, all representations must obey
this same identification, thus an element in the algebra iφJ3, J3 diagonal, will
exponentiate onto a group operation











eim1φ

eim2φ

. . .

eimnφ











. (33)

and we must have mj4π = (2mj)2π, or 2mj ∈ Z. The same conclusion follows
from considering K3.

What’s more, if we consider the commutation relations for the J± generators
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we have (for eigenstates)

[J3, J±] |m〉 = ±J± |m〉 (34)

J3J± |m〉 − J±J3 |m〉 = ±J± |m〉 (35)

J3J± |m〉 − mJ± |m〉 = ±J± |m〉 (36)

J3J± |m〉 = (m ± 1)J± |m〉 , (37)

which shows that J± |m〉 is an eigenstates with eigenvalue shifted by one. Thus
the spectrum of m values consists of integer of half-integer values, where two
consecutive eigenvalues differ by exactly one. Since the representations are
assumed irreducible, there can be no ‘gaps’ in the spectrum. Specifically, the m
spectrum in any particular representation is

S = {m0 + n, 2m0, n ∈ Z, −∞ ≤ n0 < n < n1 ≤ ∞}. (38)

For the matrix elements with J± in the photon representation we have

〈n′
1, n

′
2 J± n1, n2〉 =

〈

n′
1, n

′
2

a†
1a2

a†
2a1

n1, n2

〉

(39)

=

〈

n′
1, n

′
2

√
n1 + 1

√
n2√

n2 + 1
√

n1

n1+1, n2

n1, n2+1

〉

(40)

〈

j′

m′ J±
j
m

〉

=

〈

j′

m′

√

(j ± m + 1)(j ∓ m)
j

m ± 1

〉

(41)

=
√

(j ± m + 1)(j ∓ m)δj′,jδm′,m±1. (42)

The corresponding expectation value for K± is found by inserting a factor of i.
To construct a unitary representation we want to the group operation exp iθ · J

to be a unitary operator, that is

(exp iθ · J)−1 = (exp iθ · J)† (43)

exp−iθ · J = exp−iθ · J† (44)

J = J†, (45)

that is, J must be Hermitian. J3 is diagonal, thus manifestly Hermitian. The
non-trivial requirement is for J1 and J2. We can write this requirement in terms
of the ladder operators as

J†
± = J†

1 ± (iJ2)
† = J1 ∓ iJy = J∓. (46)

This relates the expectation values as

〈n1 + 1, n2 − 1 J+ n1, n2〉 =
√

n2(n1 + 1) (47)

↓ † ↓ † (48)

〈n1, n2 J− n1 + 1, n2 − 1〉 =
√

n2(n1 + 1), (49)

5



where each row is the actual expectation value, but the two rows must be equal
be taking the adjoint, thus the n’s must satisfy

√

n2(n1 + 1) =
√

n2(n1 + 1)
∗
, (50)

or the expectation must be real.
If we consider the ni ∈ R then this is satisfied exactly when the expression

under the root is non-negative, or when both factors have the same sign, thus

n2 ≥ 0
n1 ≥ −1

or
n2 ≤ 0
n1 ≤ −1

. (51)

The same considerations apply with the expectation values

〈n1 − 1, n2 + 1 J− n1, n2〉 =
√

n1(n2 + 1) (52)

↓ † ↓ † (53)

〈n1, n2 J+ n1 − 1, n2 + 1〉 =
√

n1(n2 + 1), (54)

which gives the analogous inequalities

n1 ≥ 0
n2 ≥ −1

or
n1 ≤ 0
n2 ≤ −1

. (55)

These inequalities are best illustrated on the n1n2-plane as in Fig. 2. The
commonly shaded regions, I and III, are the allowed regions by Hermiticity.

n1

n2

I

III

Figure 2: Hermiticity inequalities for su(2).

The action of J± on states is to move them on diagonal lines in the plane,
conserving n1 + n2. In order for Hermiticity to be enforced, a state cannot be
shifted outside of the quadrants I or III. This is automatically enforced for any
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state lying on a boundary defined by the ground state of either ni = 0 in I or
ni = −1 in III, since the appropriate shift operator will annihilate such a state.
These are the only states annihilated by the ladder operators, thus the only
allowable spectra are those that include such a boundary state as only these
guarantee that the group representation remains unitary.

Since both boundaries are reachable by shifting, a spectrum must contain
states with both ni = 0 in I and ni = −1 in III. Since both n’s shift by ±1, the
allow spectrum thus requires the ni be integers for su(2). Thus, the UIR are
given by two classes of discrete series

2j + 1 ∈ N, m = 0,±1, . . . ,±|j| (56)

2j′ + 1 ∈ Z
−, m′ = 0,±1, . . . ,±|j′ + 1|. (57)

However, these two series are not independent. We can map a j′ representation
into the j representation with the same dimensionality by j = −j′ − 1 and
m′ = m. Then the operators J±, J3 all have exactly the same spectra, and thus
this map is an isomorphism of representations. For example,

〈

−j′ − 1
m′ ± 1

J±
−j′ − 1

m′

〉

=
√

((−j′ − 1) ∓ m′)((−j′ − 1) ± m′ + 1)

=
√

(j ∓ m)(j ± m + 1) (58)

=

〈

j
m ± 1

J±
j
m

〉

Thus, we conclude that all of the UIR are in fact given by the discrete series

Dj : 2j + 1 ∈ N, m = 0,±1, . . . ,±|j|. (59)

We now turn to the representations of su(1, 1). As the single-valuedness
conditions must apply here as well, we again have a discrete, contiguous integer
or half-integer spectrum for m-values. We again want the representations to be
unitary, which again requires that K†

± = K∓. As before, we use this property
in the matrix elements to deduce the relations

i
√

n2(n1 + 1) = (i
√

n2(n1 + 1))∗ (60)

i
√

n1(n2 + 1) = (i
√

n1(n2 + 1))∗, (61)

which requires, again, that the matrix elements be real, but in this case requires
that the square root be pure imaginary, so that the quantity under the square
root must be a non-positive integer. This leads to the two sets of inequalities

n2 ≥ 0
n1 ≤ −1

or
n2 ≤ 0
n1 ≥ −1

(62)

and
n1 ≥ 0
n2 ≤ −1

or
n1 ≤ 0
n2 ≥ −1

. (63)
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n1

n2

II

IV

Figure 3: Hermiticity inequalities for su(1, 1).

These inequalities are also best represented on the n1n2-plane in Fig. 3 and
show the quadrants II and IV, as well as the central square region.

We again require that Hermiticity be enforced as states are moved by the
ladder operations, which is only satisfied in regions II and IV if an edge state
is included. For example, the upper edge of IV is defined by n2 = −1, thus
we must include the state |n1,−1〉, but since 2m = (n1 − n2) ∈ Z, we have
n1 = 2m − 1 ∈ Z as well, and we again have states defined on the lattice sites.
Thus the total j is given by 2j = n1 − 1 or 2j + 1 = n1 ∈ N. The first allowed
value of m is given by m = (n1 + 1)/2 = ((2j + 1) + 1)/2 = (j + 1). Finally,
there is no outer edge to this series, so we have a discrete series bounded below:

Dj
+ : 2j + 1 ∈ N, m = |j| + 1, |j| + 2, . . . (64)

Nearly the same considerations applies for the left edge of IV, defined by
n1 = 0. This gives rise to the same series D+

j , but with 2j = n2 ∈ Z
−. This

time the first m value is given by m = −n2/2 = −j, which gives

Dj
+ : 2j ∈ Z

− m = |j|, |j| + 1, . . . (65)

Finally, if we apply this procedure in II we obtain a discrete series that is
bounded above. The right border is defined by n1 = −1 and the bottom by
n2 = 0. In the first case we get 2j + 1 = n2 ∈ N with first m value −j − 1. In
the second case we get 2j = n1 ∈ Z

− with first m value j. The two series are

Dj
− : 2j + 1 ∈ N m = −|j| − 1,−|j| − 2, . . . (66)

Dj
− : 2j + 1 ∈ Z

− m = −|j|,−|j| − 1, . . . (67)

Now consider the central box defined by −1 ≤ n1, n2,≤ 0. States in this
square are allowable by Hermiticity. However, single-valuedness requires that
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2m = n1−n2 ∈ Z, or n2 = n1+Z, which can only be satisfied in this unit-square
if n1 = n2, that is, along the diagonal. There are no further conditions since
a state starting in the central region will never leave the allowed Hermiticity
region. This gives the ’complementary series’

Dj : −1 ≤ 2j + 1 ≤ 1, m ∈ Z. (68)

We can further attempt to relax the ni to make them complex. The matrix
elements of the shift operators can be written

〈

j
m ± 1

K±
j
m

〉

= i
√

(j ∓ m)(j ± m + 1) (69)

= i
√

j2 + j − m2 ∓ m (70)

= i
√

(j2 + j + 1/4) − (m2 ± m + 1/4) (71)

= i
√

(j + 1/2)2 − (m ± 1/2)2 (72)

=
√

(m ± 1/2)2 − (j + 1/2)2, (73)

which must be real. If we write j + 1/2 = iβ, β ∈ R, then

〈

j
m ± 1

K±
j
m

〉

=
√

(m ± 1/2)2 + β2, (74)

which always satisfies the constraint. Since the m values must be integers, it’s
easy to invert this argument and show that this is the only allowable choice
for complex j. These series must also live in the central ‘square’ and require
n1 = n2 as before, thus j = n1 = n2 = 1/2 + iβ in that square. This gives rise
to the ’principle series’

Dj : 2j + 1 = iβ, m ∈ Z. (75)

As in the su(2) case there are equivalences between some of these represen-
tations. It is apparent from our previous calculations that the matrix elements
are invariant under the simultaneous replacement j′ = j − 1 and m′ = m. This
may be regarded as the mapping (n1, n2) → (−n1 − 1,−n2 − 1) which is an
inversion about the line n2 = −n1 − 1/2. We can then write the discrete series
as

discrete+ : 2j + 1 ∈ N, m = j + 1, j + 2, . . .
discrete− : 2j + 1 ∈ N, m = −j + 1,−j + 2, . . .

(76)

The complementary series reduces to

complementary : 0 ≤ 2j + 1 ≤ 1, m = 0,±1,±2, . . . , (77)

but the principle series remains unchanged because it lies on the inversion axis.
There is however some redundancy in the principle series as the matrix elements
depend only on (j + 1/2)2 = −β2, so that ±β gives rise to the same represen-
tations with the same values of m. Finally, there is an accidental degeneracy
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when β = 0 and this representation is equivalent to one in the complementary
series.

In summary we have the following four series of representations of su(1, 1)

discrete+ : 2j + 1 ∈ N, m = j + 1, j + 2, . . .
discrete− : 2j + 1 ∈ N, m = −j + 1,−j + 2, . . .

complementary : 0 ≤ 2j + 1 ≤ 1, m = 0,±1,±2, . . .
principle : 2j + 1 = iβ, β ≥ 0, m = 0,±1,±2, . . .

(78)

which are represented together in Fig. 4.

n1

n2

I

III

II

IV

su(2)su(1, 1)

su(2) su(1, 1)

Figure 4: All UIR of the real forms of A1. The point marked with a dot denote
the principle series. The diagonal lines are the complementary series. The
lattice points in the four quadrants are the discrete series. The wavy lines are
the ‘no-mans-land’ which separates the su(2) from su(1, 1).

This concludes the master analytic representation of A1, which consists of
all the UIR of the real forms of sl(2, C), which are su(2) and su(1, 1). These rep-
resentations were constructed through the Schwinger representation of angular
momentum in a lattice representing bilinear products of two photon operators.
By enforcing the Hermiticity conditions on the operators (the group operations
are unitary), all the UIR were constructed.
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