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Problem 1.1 Perform the calculations of Example 1.7.

Let S =
{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = 1, x3 = 0

}
be the unit circle in the

(x1, x2)-plane, let U = R3 − S, and consider the function f : U → R given by

f : (x1, x2, x3) 7→
(−2x1x3

ξ
,
−2x2x3

ξ
,
x2

1 + x2
2 − 1

ξ

)

,

where ξ = x2
3 + (x2

1 + x2
2 − 1)2. First we compute the derivative of ξ:

∂1ξ = 4x1(x
2
1 + x2

2 − 1)

∂2ξ = 4x2(x
2
1 + x2

2 − 1)

∂3ξ = 2x3.

Now the components of the curl as evaluated as

(curl f)1 = ∂2f3 − ∂3f2

=

(
2x2

ξ
− x2

1 + x2
2 − 1

ξ2
∂2ξ

)

−
(−2x2

ξ
+

2x2x3

ξ2
∂3ξ

)

=
4x2ξ − (x2

1 + x2
2 − 1)∂2ξ − 2x2x3∂3ξ

ξ2

=
4x2ξ − (x2

1 + x2
2 − 1)2(4x2) − 4x2x

2
3

ξ2

=
4x2

ξ2
(ξ − (x2

3 + (x2
1 + x2

2 − 1)2))

=
4x2

ξ2
(ξ − ξ)

= 0

(curl f)2 = ∂3f1 − ∂1f3

=

(−2x1

ξ
+

2x1x3

ξ2
∂3ξ

)

−
(

2x1

ξ
− x2

1 + x2
2 − 1

ξ2
∂1ξ

)

=
−4x1ξ + 2x1x3∂3ξ + (x2

1 + x2
2 − 1)∂1ξ

ξ2
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=
−4x1ξ + 4x1x

2
3 + 4x1(x

2
1 + x2

2 − 1)2

ξ2

=
4x1

ξ2
(−ξ + 4x2

3 + (x2
1 + x2

2 − 1)2)

= 0

(curl f)3 = ∂1f2 − ∂2f1

=
2x2x3

ξ
∂1ξ −

2x1x3

ξ
∂2ξ

=
2x3

ξ
(x2∂1ξ − x1∂2ξ)

=
2x3

ξ
(4x1x2(x

2
1 + x2

2 − 1) − 4x1x2(x
2
1 + x2

2 − 1))

= 0

Thus we have curl f = 0. So f ∈ ker (curl ) and [f ] ∈ H1(U). We will
show, hwoever, that [f ] 6= 0 by showing that there is no function F such that
f = gradF .

Suppose such an F existed and consider the integral of d
dtF (γ(t)) where the

curve γ is given by

γ(t) =
(√

1 + cos t, 0, sin t
)
, −π ≤ t ≤ π.

First we have
∫ π

−π

d

dt
F (γ(t))dt = lim

ǫ→0

∫ π−ǫ

−π+ǫ

d

dt
F (γ(t))dt

= lim
ǫ→0

F (γ(t))
∣
∣
∣

π−ǫ

−π+ǫ

= 0,

where the limit was taken since the curve is not differentiable at its endpoints.
One the other hand we have

d

dt
F (γ(t))dt = ∂iF (γ(t))γ̇i(t)

= fi(γ(t))γ̇i(t)

Now, we have

γ̇1(t) =
− sin t

2
√

1 + cos t

γ̇2(t) = 0

γ̇3(t) = cos t,

and ξ(γ(t)) = sin2 t + (1 + cos t − 1)2 = 1. so that

f(γ(t)) = (−2 sin t
√

1 + cos t, 0, cos t),
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and finally
fi(γ(t))γ̇i(t) = sin2 t + 0 + cos2 t = 1,

for all t, which yields a value of 2π for the integral over γ which gives a contra-
diction. Thus F cannot exist.

Problem 1.2 Let W be the open set given by

W =
{
(x1, x2, x3) ∈ R : either x3 6= 0 or x2

1 + x2
2 < 1

}
.

Prove the existance and uniqueness of a function F ∈ C∞(W, R) such that

grad (F ) is the vector field considered in Example 1.7 and F (0) = 0. Find a

simple expression for F valid when x2
1 + x2

2 < 1.

Existance: It suffices to show that W is star-shaped about the origin, since
then the existance will follow from Theorem 1.6.

Let x ∈ W , s = (s1, s2, s3), and suppose that s3 = 0. then s is contained
in the unit circle in the (x1, x2)-plane which is star-shaped. Now suppose that
s3 6= 0 and let p be a point on the line joining s to the origin. If p3 = 0, then
p = 0 and p ∈ W , while if p3 6= 0 then p ∈ W . Thus W is star-shaped.

Now we have some F which satisfies grad (F ) = f . Consider a new function
F ′ defined by

F ′(x) = F (x) − F (0).

Then F ′(0) = 0 and grad (F ′) = grad (F ) − 0 = f and thus satisfies the given
condition.

Uniqueness: Suppose F1 and F2 both satisfy the given criteria, then we
have grad (F1 − F2) = 0, so that the function F1 − F2 is constant on W (since
W is connected). Moreover, F1(0) − F2(0) = 0 so that F1(x) = F2(x) for all
x ∈ W , so that the solution is unique.

Finally, we give an expression for F when x2
1 + x2

2 < 1. First, set x3 = 0,
then we have

f =

(

0, 0,
1

x2
1 + x2

2 − 1

)

,

that is, ∂1F = ∂2F = 0 whenever x3 = 0. Thus we have

F (x1, x2, 0) = F (0, 0, 0) = 0,

for x2
1 + x2

2 < 1.
Now we have

F (x1, x2, x3) =

∫ 1

0

fi(γ(t))γ̇i(t)dt,

for any curve γ(t) that connects the origin to (x1, x2, x3). Due to the above we
can take our curve as the straight line from the origin to the point (x1, x2, 0),
which doesn’t contribute to the integral, and then as the line from there to the
final point, which will be the curve

γ(t) = (x1, x2, tx3),
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so that our integral becomes

F (x1, x2, x3) =

∫ 1

0

f3(x1, x2, tx3)x3dt

= x3

∫ 1

0

x2
1 + x2

2 − 1

(tx3)2 + (x2
1 + x2

2 − 1)2
dt

=
x3

α

∫ 1

0

dt

(tx3/α)2 + 1
,

where we have set α = x2
1 + x2

2 − 1. Now if we make the substitution y =
tx3/(x2

1 + x2
2 − 1) we obtain

F (x1, x2, x3) =

∫ x3/α

0

dy

y2 + 1

= arctan(y)
∣
∣
∣

x3/α

0

= arctan

(
x3

x2
1 + x2

2 − 1

)

.

Problem 2.1 Prove the formula in Remark 2.10.

In the ’older’ formula we sum over all permutations σ ∈ S(p + q) of the
vectors, not just the ordered ones. Let σ be such a permutation, then there are

(p + q)! =
(p + q)!

p
!q!p!q! =

(
p + q

p

)

p!q!,

arrangements, corresponding to permuting the first p objects among themselves,
then the last q among themselves, and then shuffling the first p with the last
q. We will write σ using this decomposition: σ = τ ◦ πp ◦ πq, where τ ∈ S(p, q)
is a (p, q)-shuffle, πp ∈ S(p, q̄) is a permutation among the first p objects, πq ∈
S(p̄, q) is a permutation among the remaining p. The our formula becomes

1

p!q!

∑

τ

∑

πp

∑

πq

sgn(σ)ω1(ξσ(1) . . . ξσ(p))ω2(ξσ(p+1) . . . ξσ(n)),

where we have

sgn(σ) = sgn(τ ◦ πp ◦ πq) = sgn(τ) · sgn(πp) · sgn(πq).

Likewise, we have (since πq leave the first p unchanged, πp leave the last q
unchanged, and therefore they commute)

ω1(ξσ(1) . . . ξσ(p)) = ω1(ξτ◦πp◦πq(1) . . . ξτ◦πp◦πq(p))

= ω1(ξτ◦πp(1) . . . ξτ◦πp(p))

= sgn(πp) · ω1(ξτ(1) . . . ξτ(p)),
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and

ω2(ξσ(p+1) . . . ξσ(n)) = ω2(ξτ◦πp◦πq(p+1) . . . ξτ◦πp◦πq(n))

= ω2(ξτ◦πq◦πp(p+1) . . . ξτ◦πq◦πp(n))

= ω2(ξτ◦πq(p+1) . . . ξτ◦πq(n))

= sgn(πq) · ω2(ξτ(p+1) . . . ξτ(n)).

This leave us with

1

p!q!

∑

τ

∑

πp

∑

πq

sgn(τ)ω1(ξτ(1) . . . ξτ(p))ω2(ξτ(p+1) . . . ξτ(n)),

since sgn2 = 1 for any permutation. The sums over πp and piq just give p! and
q! respectively, which cancel the factorials already present and thus establishes
the result.

Problem 2.2 Find an ω ∈ Ω2R4 such that ω ∧ ω 6= 0.

More generally, let V be a 2n-dimensional vector space and α a 2−form
defined by the skew-symmetric 2n × 2n-matrix aij

α = αije
i ∧ ej,

in the orthonormal basis {ei},where it is understood that the sum is for i < j.
First we verify that α is indeed a 2−form.

α(x, x) = (αije
i ∧ ej)(xrer, x

2es)

= aijx
rxsei ∧ ej(er, es)

= aijx
rxs(δi

rδ
j
s − δi

sδ
j
r)

= aijx
ixj − aijx

ixj

= 0.

Now we define a 2n-form β by

β = α∧ . . .∧
︸ ︷︷ ︸

n times

α.

Using our basis, we have

β = (ai1j1e
i1 ∧ ej1) ∧ . . . ∧ (ainjn

ein ∧ ejn)

= ai1j1 . . . ainjn
(ei1 ∧ ej1) ∧ . . . ∧ (ein ∧ ejn).

Now, there are only 2n basis elements, so a term in the sum will vanish unless
the basis elements form a permutation of all {1, . . . , 2n}. Moreover, we can
swap products of pairs of basis elements without changing its value since this is
always an even permutation, thus we can write

β = n!ai1j1 . . . ainjn
(ei1 ∧ ej1) ∧ . . . ∧ (ein ∧ ejn),
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where we now have il < ik whenever l < k, that is, the sum is over all unordered
pairs of basis elements. Since there were n pairs of basis elements, there are
now n! permutations of them, each contributing the same to the sum.

Now, we still have il < ik, so our sum is over all unordered partitions of the
integers {1, . . . , 2n} into pairs. We now rewrite our sum as

β = n!

(
∑

σ

sgn(σ) · ai1j1 . . . ainjn

)

e1 ∧ . . . ∧ e2n,

where σ is a permutation that gives the desired partition, and we sum over only
partitions. We can rewrite the sum this way since any such permutation of the
basis elements changes the term by exactly sgn(σ).

But, we notice that

∑

σ

sgn(σ) · ai1j1 . . . ainjn
= pf(A),

the Pfaffian of A, and for a 2n × 2n skew-symmetric matrix we have

pf2(A) = det(A).

Thus we see that β = 0 iff det(A) = 0. (We note that this holds as long as A
has an even number of rows, as it does here. For an odd number of rows, the
determinant is always zero.)

For the problem at hand it suffices to pick any 4×4 matrix with non-vanishing
determinant, such as







0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0







,

which has determinant 1.

Problem 2.3 Show that there exist isomorphisms

i : R
3 → Ω1

R
3, j : R

3 → Ω2
R

3,

given by

i(v)(w) = 〈v, w, 〉, j(v)(w1, w2) = det(v, w1, w2),

where 〈, 〉 is the usual inner product. Show that for v1, v2 ∈ R3, we have

i(v1) ∧ i(v2) = j(v1 × v2).

Define the map i : R3 → Ω1R3 between vector spaces by

i(v)(w) = 〈v, w〉.
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Then we have

i(αu + βv)(w) = 〈αu + βv, w〉
= α〈u, w〉 + β〈v, w〉
= αi(u)(w) + βi(v)(w),

which shows that i is a linear map.
Now, let u ∈ Ω1R3, {e1, e2, e3} an orthonormal basis for R3 and {e1, e2, e3}

the dual basis. Then we have

u(w) = uie
i(wjej)

= uiw
jei(ej)

= uiw
jδi

j

= uiw
i

= 〈u, w〉,

which shows that i is surjective. But the vector spaces have the same dimension,
so we conlude that i is injective and thus an isomorphism.

Now we define the map j : R3 → Ω2R3 by

j(v)(w1, w2) = det(v, w1, w2).

Then we have

j(αu + βv)(w1, w2) = det(αu + βv, w1, w2)

= det(αu, w1, w2) + det(βv, w1, w2)

= α det(u, w1, w2) + β det(v, w1, w2)

= αj(u)(w1, w2) + βj(v)(w1, w2),

which shows that j is linear.
Let u ∈ Ω2R3, then we can write

u =
∑

σ∈S(2,1)

uσ(1),σ(2)e
σ(1) ∧ eσ(2).

The action of the dual basis on the basis of R3 is given by

(ea ∧ eb)(ei, ej) = δa
i δb

j − δa
j δb

i

= ǫabkǫijk,

where ǫijk is the Levi-civita symbol. So we have

u(x, y) =
∑

σ∈S(2,1)

uσ(1),σ(2)x
iyjeσ(1) ∧ eσ(2)(ei, ej)

=
∑

σ∈S(2,1)

uσ(1),σ(2)x
iyjǫσ(1)σ(2)kǫijk.
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So, let us define

uk =
∑

σ∈S(2,1)

uσ(1),σ(2)ǫ
σ(1)σ(2)k,

which is a triple of numbers, so a vector in R3. In particular, we get u1 = u23,
u2 = u13, and u3 = u12. Now we have

u(x, y) = ǫijkukxiyj

= ǫkiju
kxiyj

= det(u, x, y),

and our mapping is surjective. Again, since the dimensions are the same, j is
automatically injective and hence an isomorphism.

Next, consider i(v1) ∧ i(v2), which is given by

i(v1) ∧ i(v2)(w1, w2) = det

∣
∣
∣
∣

i(v1)(w1) i(v1)(w2)
i(v2)(w1) i(v2)(w2)

∣
∣
∣
∣

= 〈v1, w1〉 · 〈v2, w2〉 − 〈v1, w2〉 · 〈v2, w1〉.
On the other hand consider j(v1 × v2), which is given by

j(v1 × v2)(w1, w2) = det(v1 × v2, w1, w2)

= ǫijk(v1 × v2)
iwj

1w
k
2

= ǫijkǫi
abv

a
1vb

2w
j
1w

k
2

= (δajδbk − δakδbj)v
a
1vb

2w
j
1w

k
2

= (va
1wa

1 ) · (vb
2w

b
2) − (va

1wa
2 ) · (vb

2w
b
1)

= 〈v1, w1〉 · 〈v2, w2〉 − 〈v1, w2〉 · 〈v2, w1〉.
Comparing these expressinos establishes the result.

Problem 2.4 Let V be a finite-dimensional vector space over R with inner

product 〈, 〉, and let

i : V → V ∗ = Ω1(V ),

be the linear map given by

i(v)(w) = 〈v, w〉.
Show that if {e1, . . . , en} is an an orthonormal basis of V , then

i(ek) = ek,

where {e1, . . . , en} is the dual basis.

Let i : V → V ∗ be given by i(v)(w) = 〈v, w〉. The dual basis is defined by
the relations ei(ej) = δi

j . We have

i(ek)(wiei) = 〈w, ek〉 = wk.

So i(ek) is the functional that picks out the k-th component of a vecotr, that is,
the functional ek:

ek(wiei) = wiek(ei) = wiδk
i = wk.
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Problem 2.5 With the assumptions of the previous problem, show the existance

of an inner product on Ωp(V ) sich that

〈w1 ∧ . . . ∧ ωp, τ1 ∧ . . . ∧ τp〉 = det(〈ωi, τj〉),
whenever ωi, τj ∈ Ω1(V ), and

〈ω, tau〉 = 〈i−1(ω), i−1(τ)〉.
Let {e1, . . . , en} be an orthonormal basis for V , and let βj = i(ej). Show that

{

βσ(1) ∧ . . . ∧ βσ(p) : σ ∈ S(p, n − p)
}

,

is an orthonormal basis of Ωp(V ).

We define the map 〈, 〉 : Ωp(V ) × Ωp(V ) → R by

〈ω, τ〉 = 〈ωσeσ, τπeπ〉
= ωστπ〈eσ, eπ〉,

where σ and τ stand for all the p-tuples of indices that are (p, m − p-shuffles,
and the inner product on basis elements is defined as in the statement of the
problem. The inner product on the basis elements is well-defined because i is
an isomorphism and the Euclidean inner product is well-defined.

Exchanging the factors makes the exchange 〈eσ, eπ〉 → 〈eπ, eσ〉, but leaves
the matrix 〈ei, ej〉 invariant because the Euclidean inner product is symmetric.

Next we have

〈αω + βρ, τ〉 = 〈(αωσ + βρσ)eσ, τπeπ〉
= (αωσ + βρσ)τπ〈eσ, eπ〉,

and the properties of an inner product are satisfied.
The elements form a basis by Theorem 2.15. Orthonormality follows from

the previous exercise.

Problem 2.6 Suppose ω ∈ Ωp(V ). Let v1, . . . , vp be vectors in V and let A =
(aij) be a p × p matrix. Show that for wi = aijwj we have

ω(w1, . . . , wp) = det(A)ω(v1, . . . , vp).

We have

ω(w1, . . . , wp) =
∑

σ∈S(p,n−p)

ωσ(1)...σ(p)e
σ(1) ∧ . . . ∧ eσ(p)(w1, . . . , wp),

where

eσ(1) ∧ . . . ∧ eσ(p)(w1, . . . , wp) = det

∣
∣
∣
∣
∣
∣
∣

eσ(1)w1 · · · eσ(1)wp

...
. . .

...

eσ(p)w1 · · · eσ(p)wp

∣
∣
∣
∣
∣
∣
∣

= det

∣
∣
∣
∣
∣
∣
∣

eσ(1)a1jvj · · · eσ(1)apjvj

...
. . .

...

eσ(p)a1jvj · · · eσ(p)apjvj

∣
∣
∣
∣
∣
∣
∣

,
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since wi = aijvj . Now consider the matrix N given by Nij = eσ(i)vj . Then the
matrix

Mij = Nikakj = eσ(i)vkakj ,

is exactly the matrix in the above equation. Since the determinant of a product
is the product of the determinants, the formula is established.

Problem 2.7 Show for f : V → W that

Ωp+q(f)(ω1 ∧ ω2) = Ωp(f)(ω1) ∧ Ωq(f)(ω2),

where ω1 ∈ Ωp(W ) and ω2 ∈ Ωq(W ).

On the one hand for Ωp(f)(ω1) ∧ Ωq(f)(ω2)(ξ1, . . . , ξp+q)

∑

σ

Ωp(f)(ω1)(ξσ(1), . . . , ξσ(p)) · Ωq(f)(ω2)(ξσ(p+1), . . . , ξσ(p+q))

=
∑

σ

ω1(f(ξσ(1)), . . . , f(ξσ(p))) · ω2(f(ξσ(p+1)), . . . , f(ξσ(p+q))),

while on the other hand Ωp+q(f)(ω1 ∧ ω2)(ξ1, . . . , ξp+q) is

(ω1 ∧ ω2)(f(ξ1), . . . , f(ξp+q))

=
∑

σ

ω1(f(ξσ(1)), . . . , f(ξσ(p))) · ω2(f(ξσ(p+1)), . . . , f(ξσ(p+q))),

which proves the formula.

Problem 2.8 Show that the set

{
f ∈ End(V ) : ∃g ∈ GL(V ) : gfg−1 is diagonal

}
,

is everywhere dense in End(V ), assuming V is a finite-dimensional complex

vector space.

Such an f is represented by an n× n complex matrix once a basis is chosen
for V , and we will denote this matrix representation by f as well. If f has
n distinct eigenvalues then it is obviously diagonalizable, so we will show that
there exists complex matrices with distinct eigenvalues arbitrarily close to every
given matrix f . We will consider these matrices as points in Cn2 ≃ R4n2

, and
use the standard topology in Euclidean space.

Given an f , denote its characteristic polynomial by

Pf (λ) = det(f − λI) = ao + aiλ
i,

where I is the unit matrix and i ∈ (1, . . . , n). Next we will define, for a given f
and characteristic polynomial Pf (λ), a function F : Cn+1 × C → C defined by

F : (z0, . . . , zn, λ) 7→ z0 + a0 + (zi + ai)λ
i,
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which is polynomial and therefore smooth (analytic).
The partial map

Fλ : (z0, . . . , zn) 7→ z0 + ziλi + Pf (λ),

has a (complex) differential given by

DFλ = (1, λ1, . . . , λn),

so that
DFλ · DF †

λ = 1 +
∑

λiλ̄i ≥ 1,

so that the differential is surjective and thus F intersects every submanifold of C

transversely, in particular {0}. Thus, by the transversality theorem, for almost
every (z0, . . . , zn) ∈ C

n+1, the map Fz : λ → z0 + a0 + (ai + zi)λ
i intersects {0}

transversely.
Now, by the fundamental theorem of algebra this polynomial must take the

value 0, so that the perturbed characteristic polynomial has distinct root (ie,
if the roots were not distinct, the map would intersect {0} tangentially rather
than transversely). Since this holds for almost all (z0, . . . , zn), we can choose
such a point within any δ-ball about the origin. Thus, this polynomial can be
made arbitrarily close to our original one and our result will follow if a nearby
polynomial is associated with a nearby matrix, which we show next.

We note that the maps ϕk : fij → bk, which give the coefficients of the char-
acteristic polynomial from the matrix are analytic maps (they are polynomial
themselves). Each of these function will possess a smooth local inverse whenever
the image point is regular, but almost every such point is regular by Sard. Since
there are only finitely many functions, almost every (n + 1)-tuple (b0, . . . , bn) is
regular for {ϕ0, . . . , ϕn}.

Now, almost every z ∈ Cn+1 will satisfy both conditions above, ie, be reg-
ular for the maps ϕk and give distinct zeros for the perturbed characteristic
polynomial. Thus, for every ǫ-ball about f we can find a corresponding δ-ball
about the origin in Cn+1 that contains a point z such that the characteristic
polynomial

z0 + a0 + (ai + zi)λ
i,

has n distinct roots and is the characteristic polynomial of some matrix in V ,
which establishes the result. We note that it is essential to consider complex
matrices since the proof depends on the fundamental theorem of algebra, which
doesn’t gaurantee roots over R.

Problem 2.9 Let V be an n-dimensional vector space with inner product 〈, 〉.
From Exercise 2.5 we obtain an inner product on Ωp(V ) for all p, in particular

for p = n.

A volume element on V is an unit vector vol ∈ Ωn(V ). Hodge’s star operator

∗ : Ωp(V ) → Ωn−p(V ),
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is defined by the equation 〈∗ω, τ〉vol = ω ∧ τ for all τ ∈ Ωp(V ). Show that ∗ is

well-defined and linear.

Let {e1 . . . en} be a basis of V with vol(e1, . . . , en) = 1 and {e1 . . . en} the

dual basis. Show that

∗(e1 ∧ . . . ∧ ep) = ep+1 ∧ . . . ∧ en,

and in general that

∗(eσ(1) ∧ . . . ∧ eσ(p)) = sgn(σ)eσ(p+1) ∧ . . . ∧ eσ(n),

with σ ∈ S(p, n − p). Show that ∗ ◦ ∗ = (−1)p(n−p) on Ωp(V ).

Suppose that u1 and u2 are two forms that satisfy the above equation for
every τ , then we have

0 = 〈u1, τ〉vol − 〈u2, τ〉vol = (〈u1, τ〉 − 〈u2, τ〉)vol

= (〈u1 − u2, τ〉vol,

which shows that u1 = u2, so that the map is well-defined. For linearity we
have

〈∗(ω + π), τ〉vol = (ω + π) ∧ τ

= ω ∧ τ + π ∧ τ

= 〈∗ω, τ〉vol + 〈∗π, τ〉vol

from linearity of the wedge product.
Next, suppose that we have

〈∗(eσ(1) ∧ . . . ∧ eσ(p)), τ)vol = (eσ(1) ∧ . . . ∧ eσ(p)) ∧ τ.

Using linearity we will let τ be a basis element

τ = ei1 ∧ . . . ∧ ein−p .

Thus the right hand side of our formula yields

eσ(1) ∧ . . . ∧ eσ(p) ∧ ei1 ∧ . . . ∧ ein−p ,

which is zero unless τ is a permutation of the remaining basis vectors:

τ = eσ(p+q) ∧ . . . ∧ eσ(n).

Thus we have

〈∗(eσ(1) ∧ . . . ∧ eσ(p)), eσ(p+1) ∧ . . . ∧ eσ(n)〉vol = sgn(σ)vol,

which yields ∗(eσ(1) ∧ . . . ∧ eσ(p)) = sgn(σ) · eσ(p+1) ∧ . . . ∧ eσ(n)).
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Now we wish to evaluate ∗ ◦ ∗ : Ωp(V ) → Ωp(V ). By the linearity of ∗ it
suffices to consider its action on basis elements. We have

∗ : eσ(1) ∧ . . . ∧ eσ(p) 7→ sgn(σ)eσ(p+1) ∧ . . . ∧ eσ(n),

and likewise

∗ : eπ(1) ∧ . . . ∧ eπ(n−p) 7→ sgn(π)eπ(n−p+1) ∧ . . . ∧ eπ(n),

where the permutations are related by

(π(1), . . . , π(n − p), π(n − p + 1), . . . , π(n)) = (σ(p + 1), . . . , σ(n), σ(1), . . . , σ(p)) ,

that is, π is a cyclic (cyc) permutation of σ, thus sgn(π) = sgn(σ) · sgn(cyc).
Since we go from σ to π by moving the last p elements across the first n − p
there are p(n − p) interchanges, which is the sign of cyc, thus we have

∗ : eσ(1) ∧ . . . ∧ eσ(p) 7→ sgn(cyc) · eπ(n−p+1) ∧ . . . ∧ eπ(n)

= (−1)p(n−p)eσ(1) ∧ . . . ∧ eσ(p),

which establishes the formula.

Problem 2.10 Let V be a 4-dimensional vector space and {e1, . . . , e4} the dual

basis. Let A = (aij) be a skew-symmetric matrix and define

α =
∑

i<j

aije
i ∧ ej .

Show that

α ∧ α = 0 ↔ det(A) = 0.

Say α∧α = λe1 ∧ e1 ∧ e2 ∧ e3 ∧ e4. What is the relation between λ and det(A)?

The first part follows immediately from proof of exercise 2.2 with n = 2.
Also, according to that exercise we have λ = n!pf(A), or λ = n!

√

det(A).

Problem 2.11 Let V be an n-dimensional vector space with inner product 〈, 〉
and volume element vol ∈ Ωn(V ), as in Exercise 2.9. Let v ∈ Ω1(V ) and

Fv : Ωp → Ωp+1(V ),

be the map

Fv(ω) = v ∧ ω.

Show that the map

F ∗
v = (−1)np ∗ ◦Fv ◦ ∗ : Ωp+1(V ) → Ωp(V ),

is adjoint to Fv, that is, 〈Fvω, τ〉 = 〈ω, F ∗
v τ〉. Let {e1, . . . , en} be an orthonormal

basis of V with vol(e1, . . . , en) = 1. Show that

F ∗
v (e1 ∧ . . . ∧ ep+1) =

p+1
∑

i=1

(−1)i+1〈v, ei〉e1 ∧ . . . ∧ êi ∧ . . . ∧ ep+1.

Show that FvF ∗
v + F ∗

v Fv : Ωp(V ) → Ωp(V ) is multiplication by ||v||2.
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In this problem v is a 1-form, ω a p-form, and τ a p+ q-form. First we make
the observation that (for forms of appropriate rank)

〈∗(a ∧ b), c〉vol = (a ∧ b) ∧ c = a ∧ (b ∧ c) = 〈∗a, b ∧ c〉vol,

so that
〈∗(a ∧ b), c〉 = 〈∗a, b ∧ c〉.

Now, on one hand we have

〈Fvω, τ〉 = 〈v ∧ ω, τ〉,

while on the other

〈F ∗
v τ, ω〉 = (−1)np〈∗Fv(∗τ), ω〉

= (−1)np〈∗(v ∧ (∗τ), ω〉
= (−1)np+p〈∗(∗τ ∧ v), ω〉
= (−1)p(n+1)〈∗ ∗ τ, v ∧ ω〉
= (−1)p(n+1)(−1)p(n−p)〈τ, v ∧ ω〉
= (−1)p−p2〈v ∧ ω, τ〉,

but p − p2 = p(1 − p) is always even, which establishes the result.
Next, we have F ∗

v () = (−1)np ∗Fv ∗(), so we’ll take the component mappings
in sequence:

∗ : e1 ∧ . . . ∧ ep+1 7→ ep+2 ∧ . . . ∧ en.

Next is
Fv : ep+2 ∧ . . . ∧ en 7→ v ∧ ep+2 ∧ . . . ∧ en,

and finally

∗ : v ∧ ep+2 ∧ . . . ∧ en 7→ sgn(σ)vie
1 ∧ . . . ∧ ēi ∧ . . . ∧ ep+1,

where the hat indicated that term is missing and σ is the permutation that
takes {1, . . . , n} → {i, p+2, . . . , n, 1, 2, . . . , i−1, . . . , p+1}. This permutation is
obtained by first moving the n− p elements {i, p + 2, . . . , n} past the remaining
p elements which requires p(n−p) interchanges, and then moving i to its proper
place, which requires an additional p + 1 − i, which yeilds

sgn(σ) = (−1)p(n−p)+p+1−i.

The exponent can be rewritten as pn+(i+1)+ p(1− p), since adding 2 doesn’t
change the parity. But p(1 − p) is always even, and the pn will cancel with the
pn from the map definition, yeilding

F ∗
v (e1 ∧ . . . ∧ ep+1) = (−1)i+1vie

1 ∧ . . . ∧ êi ∧ . . . ∧ ep+1,

which can also be written as

F ∗
v (e1 ∧ . . . ∧ ep+1) = (−1)i+1〈v, ei〉 ∧ . . . ∧ êi ∧ . . . ∧ ep+1,
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proving the formula.
Next, consider the operator FvF

∗
v + F ∗

v FV : Ωp(V ) → Ωp(V ) with v = λe1.
We have two cases. The first is the action of this operator on a basis element
containing e1. We have

F ∗
v : e1 ∧ ei2 ∧ . . . ∧ eip 7→ λei2 ∧ . . . ∧ eip ,

followed by
Fv : λei2 ∧ . . . ∧ eip 7→ λ2e1 ∧ ei2 ∧ . . . ∧ eip .

However, the second term in the operator gives zero because

Fv : e1 ∧ ei2 ∧ . . . ∧ eip 7→ λe1 ∧ e1 ∧ ei2 ∧ . . . ∧ eip ,

which is zero, thus the operator is multiplication by λ2 = ||v||2.
The second case is the action of the operator on a basis element not con-

taining e1. The first term gives zero in this case since

∗ : e2 ∧ ei2 ∧ . . . ∧ eip 7→ sgn(σ)e1 ∧ . . . ∧ eip+1 ∧ . . . ∧ ein ,

and then

Fv : e1 ∧ . . . ∧ eip+1 ∧ . . . ∧ ein 7→ λe1 ∧ e1 ∧ . . . ∧ ei2 ∧ . . . ∧ eip ,

which is zero. Now, the second term yields

Fv : e2 ∧ ei2 ∧ . . . ∧ eip 7→ λe1 ∧ e2 ∧ eip+1 ∧ . . . ∧ ein ,

and then

F ∗
v : λe1 ∧ e2 ∧ eip+1 ∧ . . . ∧ ein 7→ λ2e2 ∧ ei2 ∧ . . . ∧ eip ,

which again shwos that the operator is multiplication by ||v||2.
Finally, for arbitrary v, we are free to choose our basis so that e1 is in the

direction of v, so the problem reduces to the particular case above with the same
result, since it was written in a coordinate independent form.

Problem 2.12 Let V be an n-dimensional vector space. Show for a linear map

f : V → V the existance of a number d(f) such that

Ωn(f)(ω) = d(f)ω,

for ω ∈ Ωn(V ). Verify the product rule

d(g ◦ f) = d(g)d(f),

for linear maps f, g : V → V using the functoriality of Ωn(). Prove that d(f) =
det(f).
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Let {e1 . . . en} be a basis of V and {e1, . . . , en} the dual. There is only one
basis element in Ωn(V ), so we have ω = ω̂e1∧ . . .∧en, where ω̂ is the component
of ω in this basis. The action of Ωn(f)(ω) on the basis vectors of V is given by

Ωn(f)(ω)(e1, . . . , en) = ω(f(e1), . . . , f(en))

= ω̂e1 ∧ . . . ∧ en(fk
1 ek, . . . , fk

nek)

= ω̂ det






e1(fk
1 ek) · · · e1(fk

nek)
...

. . . · · ·
en(fk

1 ek) · · · en(fk
nek)






= ω̂ det(eifk
j ek).

The matrix whose determinant we want is simply the product of two matrices

eifk
j ek = (fk

j )(ekei),

and so we have

det(eifk
j ek) = det(fk

j ) det(ekei)

= det(fk
j ) det(δi

k)

= det(f).

This establishes the formula with d(f) = det(f). Next, a commutative diagram
of maps on V gives rise to a commutative diagrams of maps on Ωn(V ):

V

VV

Ωn(V )

Ωn(V )Ωn(V )

g

f

g ◦ f Ωn(g)

Ωn(f)

Ωn(g ◦ f)

Given the first result of the problem we can rewrite the second diaram as

Ωn(V )

Ωn(V )Ωn(V )

d(g)

d(f)

d(g ◦ f)

which shows that (d ◦ f) = d(f)d(g).
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Cohomology Homework: Chapter 3

Daniel J. Cross

April 12, 2007

Problem 3.1 Show for an open set in R2 that the de Rham complex

0 → Ω0(U)
d
→ Ω1(U)

d
→ Ω2(U) → 0,

is isomorphic to the complex

0 → C∞(U, R)
grad
→ C∞(U, R2)

curl
→ C∞(U, R) → 0,

Analogously, show that for an open set in R
3 that the de Rham complex is

isomorphic to

0 → C∞(U, R)
grad
→ C∞(U, R3)

curl
→ C∞(U, R3)

div
→ C∞(U, R) → 0,

defined in chapter 1.

We will do the R3 case first. We know that Ω0(U) ≃ C∞(U, R). Further-
more, from exercise 2.3 we have

Ω1(R3) ≃ R
3

Ω2(R3) ≃ R
3.

Now, ω ∈ Ω1(U) is a smooth map ω : U → Ω1(R3) ≃ R3, in other words,
a smooth vector field on U . Likewise ω ∈ Ω2(U) is a smooth map ω : U →
Ω2(R3) ≃ R3, and so this too is a smooth vector field on U .

Now we need Ω3(U). Any τ ∈ Ω3(R3) can be written as

τ = τ̂ e1 ∧ e2 ∧ e3,

where τ̂ ∈ R. Thus we regard an ω ∈ Ω3(U) as a smooth map ω : U → Ω3(R3) ≃
R, that is, a smooth function on U .

So, we’ve established the isomorphism on the vector spaces, next we need
the maps. However, Theorem 3.7 and following establishes that the d operator
acts as the differential operators grad , curl , and div on the appropriate spaces
as indicated, and the result follows.

Next we take the R
2 case. We again have Ω0(U) ≃ C∞(U, R). We further-

more have Ω1(R2) ≃ R2 by problem 2.3 since the isomorphism depends only on

1



the inner product which is defined in any dimension. The same argument as
above then shows that Ω1(U) ≃ C∞(U, R2).

Now, any τ ∈ Ω2(R) can be written as

τ = τ̂ e1 ∧ e2,

where τ̂ ∈ R. So any ω ∈ Ω2(U) is a smooth map ω → Ω2(R2) ≃ R, so ω is a
smooth function on U .

Now, we know that d : Ω0 → Ω1 acts as div by theorem 3.7, so we only need
d : Ω1 → Ω2. We write ω ∈ Ω1(U) as ω1dx1 + w2dx2. Then we have

dω = dω1dx1 + dω2dx2

=
∂ω1

∂xi
dxi ∧ dx1 +

∂ω2

∂xi
dxi ∧ dx2

=
∂ω1

∂x2
dx2 ∧ dx1 +

∂ω2

∂x1
dx1 ∧ dx2

=

(
∂ω1

∂x2
−

∂ω2

∂x1

)

dx1 ∧ dx2

= (curl ω̂)dx1 ∧ dx2

where ω̂ = ω1dx1 + ω2dx2 ∈ C∞(U, R2), and we have ωi = ωi.

Problem 3.2 Let U ⊂ Rn be an open set and {dx1, . . . , dxn} the usual constant

1-forms. Let vol = dx1 ∧ . . . ∧ dxn ∈ Ωn(U). Use the star operator defined in

2.9 to define Hodge’s star operator

∗ : Ωp(U) → Ωn−p(U),

and show that ∗(dx1 ∧ . . . ∧ dxp) = dxp+1 ∧ . . . ∧ dxn and ∗ ◦ ∗ = (−1)n(n−p).

Define d∗ : Ωp(U) → Ωp−1(U) by

d∗(ω) = (−1)np+n−1 ∗ ◦ d ◦ ∗ (ω).

Show that d∗ ◦ d∗ = 0. Verify the formula

d∗(fdxi1 ∧ . . . ∧ dxip) = (−1)j ∂f

∂xij
dxi1 ∧ . . . d̂x

ij

. . . ∧ dxip .

We will define the action of ∗ point-wise using the action of ∗ from 2.9 on
basis elements:

∗(ω) = ∗(ω̂eσ(1) ∧ . . . ∧ eσ(p))

= ω̂ ∗ (eσ(1) ∧ . . . ∧ eσ(p))

= sgn(σ)ω̂eσ(p+1) ∧ . . . ∧ eσ(n).

We then extend this definition to arbitrary ω using linearity. Now we have (at
each point)

∗(dx1 ∧ . . . ∧ dxp) = ∗(e1 ∧ . . . ∧ ep)

= ep+1 ∧ . . . ∧ en

= dxp+1 ∧ . . . ∧ dxn.
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We now demonstrate that this result is the same as the previous definition
extended to differential forms using this last result on the dxi and the definition
of ∗ from 2.9:

〈∗ω, τ〉 = 〈∗(ω̂dx1 ∧ . . . ∧ dxp), τ〉vol

= ω̂〈∗(dx1 ∧ . . . ∧ dxp), τ〉vol

= ω̂(dx1 ∧ . . . ∧ dxp ∧ τ)

= ω ∧ τ.

Now, since ∗ as defined above only acts on the dxi and no the component
functions, the calculation reduces to the one in 2.9 giving the same result, that
∗ ◦ ∗ = (−1)n(n−p).

Next we want to calculate d∗ ◦ d∗ on a p-form ω. We can write the operator
as

d∗ ◦ d∗ =
(
(−1)np−1 ∗ ◦ d ◦ ∗

)
◦

(
(−1)np+n−1 ∗ ◦ d ◦ ∗

)
◦,

since the second d∗ acts on a (p − 1)-form. We then write

d∗ ◦ d∗ = (−1)n ∗ ◦ d ◦ ∗ ◦ ∗ ◦ d ◦ ∗,

and the succession of the orders of the form in each map is:

(p)
∗
→ (n − p)

d
→ (n − p + 1)

∗
→ (p − 1)

∗
→ (n − p + 1)

d
→ (n − p + 2)

∗
→ (p − 2).

Now we have
d∗ ◦ d∗ = (−1)n ∗ ◦ d ◦ ∗ ◦ ∗

︸ ︷︷ ︸

(−1)n(p−1)

◦ d ◦ ∗,

since the bracketed operator acts on an (n − p + 1)-form. Then we have

d∗ ◦ d∗ = (−1)np ∗ ◦ d ◦ d
︸︷︷︸

0

◦∗ = 0.

Finally, we calculate the action of d∗ on a p-form:

d∗(fdx1 ∧ . . . ∧ dxp) = (−1)np+n−1 ∗ ◦ d ◦ ∗(fdx1 ∧ . . . ∧ dxp)

= (−1)np+n−1 ∗ ◦ d
(
f ∗ (dx1 ∧ . . . ∧ dxp)

)

= (−1)np+n−1 ∗ ◦ df
(
∗(dx1 ∧ . . . ∧ dxp)

)
.

Next, we note that df can be though of here as a map whose action is given by

df(ω) = df ∧ ω,

so that we can apply the result of 2.11, that is, we can rewrite our last line
(ignoring sign for now) as

∗ ◦ df
(
∗(dx1 ∧ . . . ∧ dxp)

)
= (−1)n(p−1)(df∗)(dx1 ∧ . . . ∧ dxp),
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where the sign is because this acts on a p-form. But then

(df∗)(dx1 ∧ . . . ∧ dxp) = (−1)i+1〈df, dxi〉dx1 ∧ . . . d̂x
i
. . . ∧ dxp

= (−1)i+1

(
∂f

∂xi

)

dx1 ∧ . . . d̂x
i
. . . ∧ dxp,

using 2.11 again. the sign factor, including all contributions, becomes

i + 1 + n(p − q) + np + n − 1 = i + 1 − 1 + 2np + n − n → i,

which establishes the result. We note that our derivation didn’t depend on
which p of the dxi’s we picked, but only that there were p of them. so we can
replace dx1 ∧ . . . ∧ dxp with any permutation of the p indices and result will
holds. If the indices are labeled j1, . . . , jp, then we replace i in our formula with
ji, that is

(df∗)(dxj1 ∧ . . . ∧ dxjp) = (−1)ji
∂f

∂xji
dxj1 ∧ . . . d̂x

ji

. . . ∧ dxjp .

Problem 3.3 With the notation of the previous problem, the Laplace operator

∆ : Ωp(U) → Ωp(U) is defined by

∆ = d ◦ d∗ + d∗ ◦ d.

Let f ∈ Ω0(U). Show that ∆(fdx1 ∧ . . . ∧ dxp) = ∆(f)dx1 ∧ . . . ∧ dxp, where

−∆(f) =
∂2f

(∂x1)2
+ . . . +

∂2f

(∂xn)2
.

A p-form ω ∈ Ωp(U) is said to be harmonic if ∆(ω) = 0. Show that ∗ maps

harmonic forms to harmonic forms.

We will take a p-form and first compute the action of d∗ ◦ d. First the action
of d:

d(fdx1 ∧ . . . ∧ dxp) = df ∧ dx1 ∧ . . . ∧ dxp

=
∂f

∂xi
dxi ∧ dx1 ∧ . . . ∧ dxp,

where we note that we must have i > p for this to be nonzero.
Next we have d∗ acting on a (p + q)-form:

d∗ = (−1)np−1 ∗ ◦ d ◦ ∗,

which we will take one mapping at a time. First

∗

(
∂f

∂xi
dxi ∧ dx1 ∧ . . . ∧ dxp

)

=
∂f

∂xi
∗ (dxi ∧ dx1 ∧ . . . ∧ dxp)

= sgn(σ)
∂f

∂xi
dxp+1 ∧ . . . d̂x

i
. . . ∧ dxn,
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where σ is the permutation taking

(1, . . . , n) → (i, 1, . . . , p, p + 1, . . . , î, . . . , n),

which has sign i − 1.
Next we have d which gives

(−1)i−1 ∂2f

∂xj∂xi
dxj ∧ dxp+1 ∧ . . . d̂x

i
. . . ∧ dxn,

where we note that either j ≤ p or j = i for this not to be zero. We will take
these as two cases. If j 6= i (the same as j ≤ p since i > p), we get for ∗:

(−1)i−1sgnτ
∂2f

∂xj∂xi
dxj ∧ dxp+1 ∧ . . . d̂x

i
. . . ∧ dxn,

where τ is the permutation taking

(1, . . . , n) → (j, p + 1, . . . , î, . . . , n, i, 1, . . . , ĵ, . . . , p),

which we will reduce in steps - first move i, then j, then swap the first n − p

with the last p:

(j, p + 1, . . . , î, . . . , n, i, 1, . . . , ĵ, . . . , p)

↓ (−1)n−i

(j, p + 1, . . . , i, . . . , n, i, 1, . . . , ĵ, . . . , p)

↓ (−1)n−p+j−1

(p + 1, . . . , i, . . . , n, i, 1, . . . , j, . . . , p)

↓ (−1)p(n−p)

(1, . . . , j, . . . , p, p + 1, . . . , i, . . . , n)

which shows that sgn(τ) is given by

n − i + n − p + j − 1 + pn − p2 → j − i − 1 + pn.

So, if we take all our cumulative signs this gives

(np1) + (i − 1) + (j − i − 1 + pn) → j − 1,

so that our sum is

−
∑

i>p
j≤p

(−1)j ∂2f

∂xj∂xi
dxi ∧ dx1 ∧ . . . d̂x

j
. . . ∧ dxp.

In the case i = j the expression that ∗ acts on will now be

(−1)i−1 ∂2f

(∂xi)2
dxi ∧ dxp+1 ∧ . . . d̂x

i
. . . ∧ dxn,
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which can be written as

(−1)p ∂2f

(∂xi)2
dxp+1 ∧ . . . ∧ dxi ∧ . . . ∧ dxn = (−1)p ∂2f

(∂xi)2
dxp+1 ∧ . . . ∧ dxn,

since there are i − (p + 1) interchanges to move i to its proper spot, and (i −
i) + (i − p + 1) = 2i − 2 − p⊤. so, now ∗ gives

sgn(ζ)(−1)p ∂2f

(∂xi)2
dx1 ∧ . . . ∧ dxp,

where ζ is the permutation that takes

(1, . . . , n) → (p + 1, . . . , m, 1, . . . , p),

which has sign p(n − p). So, putting it all together, the total sigh will be

(np − 1) + (p) + p(n − p) = 2np = p(1 − p) − 1 → −1,

since p(1 − p) is always even, and the sum becomes

−
∑

i>p

∂2f

(∂xi)2
dx1 ∧ . . . ∧ dxp.

Whew. Now we have to do the operator d ◦ d∗. In this case we can use our
previous result to simply write

d∗(fdx1 ∧ . . . ∧ dxp) = (−1)i ∂f

∂xi
dx1 ∧ . . . d̂x

i
. . . ∧ dxp,

where we know that here i ≤ p. Then d gives

(−1)i ∂2f

∂xi∂xj
dxj ∧ dx1 ∧ . . . d̂x

i
. . . ∧ dxp,

where now j > p or j = i (the two cases are mutually exclusive as before) or
else we get zero, and will consider the two cases separately again.

First, if j > p we have

∑

i≤p
j>p

(−1)i ∂2f

∂xi∂xj
dxj ∧ dx1 ∧ . . . d̂x

i
. . . ∧ dxp,

whereas when i = j we have

(−1)i ∂2f

∂xi∂xj
dxi ∧ dx1 ∧ . . . d̂x

i
. . . ∧ dxp = −

∂2f

∂xi∂xj
dx1 ∧ . . . ∧ dxp,

since there are i − 1 interchanges to move i to its proper spot.

6



Now, if take our two sums when i = j and combine them, we see that the
summands are the same, and they only differ in the range of i, which between
the two if all of 1, . . . , n. Thus these two give

−
∑

1≤i≤n

∂2f

∂xi∂xj
dx1 ∧ . . . ∧ dxp,

which we will then write as

∆(f)dx1 ∧ . . . ∧ dxp,

following the notation in the problem statement. So, we will be done if we can
show that the other two sums cancel each other out. We will reproduce those
sums here:

−
∑

i>p
j≤p

(−1)j ∂2f

∂xj∂xi
dxi ∧ dx1 ∧ . . . d̂x

j
. . . ∧ dxp,

and
∑

i≤p
j>p

(−1)i ∂2f

∂xi∂xj
dxj ∧ dx1 ∧ . . . d̂x

i
. . . ∧ dxp.

But, we note that the i and j are just dummy indices, so we can exchange the
two in the second sum, which yields

∑

j≤p
i>p

(−1)j ∂2f

∂xj∂xi
dxi ∧ dx1 ∧ . . . d̂x

j
. . . ∧ dxp,

which is now exactly the same as the first sum (since partial derivatives commute
on smooth functions) except that they have opposite sign, so the two sums
cancel.

Problem 3.4 Let Ωp(Rn, C) be the C-vector space of alternating R-multilinear

maps

ω : R
n × · · ·×

︸ ︷︷ ︸

p

R
n → C.

Note that ω can be written uniquely as

ω = ωR + iωI ,

where ωR is the real part, ωI is the imaginary part, and both are real-valued

p-forms. Extend ∧ to a C-linear map

Ωp(Rn, C) × Ωq(Rn, C)
∧
→ Ωp+q(Rn, C),

and show that we obtain a graded anti-commutative C-algebra Ω∗(Rn, C).
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The most straight-forward thing to do is to expand each complex form into
its real-valued constituents and apply the usual wedge on these:

ω ∧ τ = (ωR + iωI) ∧ (τR + iτI)

= (ωR ∧ τR + iωI) ∧ τR + iωI ∧ iτI + ωR ∧ iτI

= (ωR ∧ τR − ωI ∧ τI) + i(ωI ∧ τR − ωR ∧ τI)

= (ω ∧ τ)R + i(ω ∧ τ)I ,

which makes sense since the wedge products on the real-valued forms are always
of a p and q form, resulting in a real-valued (p + q)-form.

To obtain the graded algebra we need to check associativity and the (anti)-
commutativity, since we already have a mapping between the grades of the
algebra. Associativity follow from that of the usual wedge product:

α ∧ [β ∧ γ] = (αR + iαI) ∧ [(βR + iβI) ∧ (γR + iγI)]

= [(αR + iαI) ∧ (βR + iβI)] ∧ (γR + iγI)

= [α ∧ β] ∧ γ

Now, let α be a p-form and β a q-form. Then we have

α ∧ β = (αR ∧ βR − αI ∧ βI) + i(αI ∧ βR + αR ∧ βI),

but it costs a (−1)pq to flip the order of the wedge product in each term since
each is a product of a real-valued p and q form. We then factor out the common
sign factor to get

α ∧ β = (−1)pq(βR ∧ αR − βI ∧ αI) + i(βI ∧ αR + βR ∧ αI)

= (−1)pqβ ∧ α,

and these properties establish Ω∗Rn, C as a graded anti-commutative C-algebra.

Problem 3.5 Introduce C-valued differential p-forms on an open set U ⊂ Rn

by setting

Ωp(U, C) = C∞(U, Ωp(Rn, C)).

Extend d to a C-linear operator

d : Ωp(Rn, C) → Ωp+1(Rn, C),

and show that theorem 3.7 holds for this case, and generalize theorem 3.12 to

this case.

We extend the definition as in the previous problem, by having the usual d

operator act on the real valued forms:

d(ω) = d(ωR + iωI) = dωr + idωI .
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Now, we need to establish the following properties of d:

(i) f ∈ Ω0(U, C), df = (∂if)dxi

(ii) d ◦ d = 0

(iii) d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ, ω ∈ Ωp(U, C),

where

∂i =
∂

∂xi
.

Now, an f ∈ Ω0(U, C) is a smooth map f : U → C, that is, a smooth C-valued
function, so we can write f as fR + ifR, so we have

df = dfr + idfI

= ∂jfRdxj + i∂jfIdxj

= ∂j(fr + ifI)dxj

= ∂jfdxj ,

which establishes the first property.
Next we have

(d ◦ d)f = d(dfR + idfI)

= d2fR + id2fI

= 0,

which establishes the second. And finally we have

d(ω ∧ τ) = d[(ωR ∧ τR − ωI ∧ τI) + i((ωR ∧ τI − ωI ∧ τR)]

= d(ωR ∧ τR) − d(ωI ∧ τI) + id(ωR ∧ τI) + id(ωI ∧ τR)

= dωR ∧ τR + (−1)pωR ∧ dτR − dωI ∧ τI + (−1)pωI ∧ dτI

+i(dωR ∧ τI + (−1)pωR ∧ dτI) + i(dωI ∧ τR + (−1)pωI ∧ dτR)

= dωR ∧ τR + idωR ∧ τI + idωI ∧ τR − dωI ∧ τI +

(−1)p(ωR ∧ dτR + iωR ∧ dτI + iωI ∧ dτR − ωI ∧ dτI)

= (dωR + idωI) ∧ (τR + iτI) + (−1)p(ωR + iωI) ∧ (dτR + idτI)

= d(ωR + iωI) ∧ (τR + iτI) + (−1)p(ωR + iωI) ∧ d(τR + iτI)

= dω ∧ τ + (−1)pω ∧ dτ,

where in the fourth line we simply rearranged the entries. This proves the result,
and shows the existence of the operator. The argument for uniqueness follows
exactly as the one given in the book for the real-valued case by distributing ∧
across the real and imaginary parts of each form.

Next we generalize theorem 3.12: if we have a map ϕ : U → V , then the
induced map ϕ∗ : Ωp(V, C) → Ωp(U, C) will have the properties:

(i) ϕ∗(ω ∧ τ) = ϕ∗(ω) ∧ ϕ∗(τ)

(ii) ϕ∗(f) = f ◦ ϕ, f ∈ C∞(V, C)

(iii) dϕ∗(ω) = ϕ∗(dω)
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First we show that (ϕ∗ω)R = (ϕ∗ωR), and similarly for the imaginary parts.
Using the calculational formula, we have

ϕ∗(ω)(x) = ωk(ϕ(x))dϕk

= [ℜ(ωk(ϕ(x))) + iℑ(ωk(ϕ(x))]dϕk

= [ωR(ϕ(x))k ]dϕk + i[ωI(ϕ(x))k ]dϕk

= ϕ∗(ωR(x)) + iϕ∗(ωI(x)),

which shows the result. Now we have

ϕ∗(ω ∧ τ) = ϕ∗(ωR ∧ τR − ωI ∧ τI + iωR ∧ τI + iωI ∧ τR)

= ϕ∗(ωR ∧ τR − ϕ∗(ωI ∧ τI) + iϕ∗(ωR ∧ τI) + iϕ∗(ωI ∧ τR)

= ϕ(ωR) ∧ ϕ∗(τR) − ϕ∗(ωI) ∧ ϕ ∗ (τI) + iϕ∗(ωR) ∧ ϕ∗(τI) + iϕ∗(ωI) ∧ ϕ∗(τR)

= ϕ(ω)R ∧ ϕ∗(τ)R − ϕ∗(ω)I ∧ ϕ ∗ (τ)I + iϕ∗(ω)R ∧ ϕ∗(τ)I + iϕ∗(ω)I ∧ ϕ∗(τ)R

= (ϕ∗ω) ∧ (ϕ∗τ).

For the second property we have

ϕ∗(f) = ϕ∗(fR + ifI)

= fR ◦ ϕ + ifiϕ

= (fr + ifI)(ϕ)

= f ◦ ϕ.

And for the third property we have

dϕ∗(ω) = dϕ∗(ωR + iωI)

= dϕ∗(ωR) + dϕ∗(iωI)

= ϕ∗(dωR) + ϕ∗(idωI)

= ϕ(dωR + idωI)

= ϕ ∗ (d(ωR + iωI))

= ϕ∗(dω).

Now we prove the uniqueness of our pullback map. Suppose that ϕ′ were
another map satisfying the above three properties. First we note that

ϕ′(f) = f ◦ ϕ = ϕ∗(f),

so that ϕ′ and ϕ∗ agree on C∞(U, C). Now, by linearity it is enough to look at
a basis p-form:

ϕ′(fdxJ ) = ϕ(f ∧ dxJ )

= (ϕ′f) ∧ (ϕ′dxJ )

= (ϕ′f) ∧ (ϕ′(dxj1 ∧ . . . ∧ dxjp))

= (ϕ′f) ∧ (ϕ′dxj1 ) ∧ . . . ∧ (ϕ′dxjp)

= (ϕ′f) ∧ d(ϕ′xj1 ) ∧ . . . ∧ d(ϕ′xjp)

= (f ◦ ϕ) ∧ d(xj1 ◦ ϕ) ∧ . . . ∧ d(xjp ◦ ϕ)

= (ϕ∗f) ∧ d(ϕ∗xj1) ∧ . . . ∧ d(ϕ∗xjp),

10



where we have applied our previous result. At this point, we just follow the
same steps backwards to get ϕ ∗ (fdxJ ), which establishes the uniqueness.

Problem 3.6 Take U = C − {0} ≃ R
2 − {0} and let z ∈ C

∞(U, C) be the

inclusion U →֒ C. Write z = x + iy. Show that

ℜ(z−1dz) = d log r,

where r : U → R is defined by r(z) = |z| =
√

x2 + y2. Show that

ℑ(z−1dz) =
−y

x2 + y2
dx +

x

x2 + y2
dy.

Since we have z = x + iy we can write dz = dx + idy. Thus we have

z−1dz = (x + iy)−1(dx + idy)

=
dx + idy

x + iy

(
x − iy

x − iy

)

=
xdx − iydx + ixdy + ydy

x2 + y2

=
xdx + ydy

x2 + y2
+ i

xdy − ydx

x2 + y2
,

which gives the required equality on the imaginary part. Now we have

d log
√

x2 + y2 =
d
√

x2 + y2

√

x2 + y2
,

but

d
√

x2 + y2 =
2xdx + 2ydy

2
√

x2 + y2
=

xdx + ydy
√

x2 + y2
,

which proves the claim.

Problem 3.7 Prove for the complex exponential map exp : C → C∗ that

dz exp = exp(z)dz, and exp∗(z−1dz) = dz.

We begin by writing the exponential map as

exp(z) = exp(x + iy= exp(x) · exp(iy),

so we get

d(exp(z)) =
∂ exp(x) exp(iy)

∂x
dx +

∂ exp(x) exp(iy)

∂y
dy

= exp(iy)
∂ exp(x)

∂x
dx + exp(x)

∂ exp(iy)

∂y
dy

= exp(iy) exp(x)dx + i exp(x) exp(iy)dy

= exp(z)(dx + idy)

= exp(z)dz,
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which proves the first part.
Next, for clarity, we will write exp : C → C∗ as exp : w 7→ z, by z = exp(w).

Then we have (using the calculational formula)

exp∗(z−1dz) = (exp(w))−1d exp(w)

= (exp(w))−1 exp(w)dw

= dw,

which proves the second part.
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Cohomology Homework: Chapter 4

Daniel J. Cross

April 4, 2007

Problem 4.1 Consider a commutative diagram of vector spaces and linear

maps with exact rows

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

d1

A
d2

A
d3

A
d4

A

d1

B
d2

B
d3

B
d4

B

Suppose that f2 and f4 are injective and f1 surjective. Show that f3 is injec-

tive. Similarly show that if f2 and f4 are surjective and f5 injective that f3 is

surjective. Thus when f1, f2, f4, and f5 are isomorphisms, so is f3.

We will show injectivity by showing that f3 has trivial kernel. Let a3 ∈

ker(f3) so that f3(a3) = 0. We have d3

B(0) = 0, so that d3

B(f3(a3)) = 0 =
f4(d

3

A(a3)). f4 is injective so we have d3

A(a3) = 0 and a3 ∈ Ker d3

A = Im d2

A.
Thus there exists an a2 ∈ A2 such that d2

A(a2) = a3.
Now we have f3(a3) = f3(d

2

A(a2)) = 0 = d2

B(f2(a2)) so that f2(a2) = b2 ∈

Ker d2

B = Im d1

B. Thus there exists a b1 ∈ B1 with d1

B(b1) = b2. Surjectivity of
f1 thus gives an a1 ∈ A1 with f1(a1) = b1 and d1

B(f1(a1)) = b2 = f2(d
1

A(a1)).
Thus we have f2(d

1

A(a1)) = f2(a2), but f2 is injective so we have d1

A(a1) = a2.
Thus a3 = d2

A(d1

A(a1)) = 0.
Next we prove surjectivity. Let b3 ∈ B3. Then d3

B(b3) = b4 ∈ B4 and
d4

B(b4) = 0. f4 is surjective so there exists an a4 ∈ A4 with f4(a4) = b4 and we
have f5(d

4

a(a4)) = d4

B(f4(a4)) = 0. But f5 is injective so we have d4

A(a4) = 0
and thus a4 ∈ Ker d4

A = Im d3

A. This gives an a3 ∈ A3 with a4 = d3

A(a3) and
f4(d

3

A(a3)) = d3

B(f3(a3)) = b4.
Next, let f3(a3) = b′

3
∈ B3. Then we have d3

B(b′
3
) = d3

B(b3) = b4, or
d3

B(b′3−b3) = 0. Thus b′3−b3 ∈ Ker d3

B = Im d2

B. So, there exists a b2 ∈ B2 with
d2

B(b2) = b′3 − b3. f2 is surjective so there exists an a2 ∈ A2 with f2(a2) = b2.
Then we have d2

B(f2(a2)) = b′
3
− b3 = f3(d

2

A(a2)). Thus we have

b3 = b′3 − f3(d
2

A(a2))

1



= f3(a3) − f3(d
2

A(a2))

= f3(a3 − d2

A(a2)),

which proves surjectivity.

Problem 4.2 Consider the following commutative diagram

0 A1 A2 A3 0

0 B1 B2 B3 0

f1 f2 f3

where the rows are exact. Show that there exists an exact sequence

0 → Ker f1 → Ker f2 → Ker f3 →

→ Cok f1 → Cok f2 → Cok f3 → 0.

We can extend the columns by adding zeros before after, yielding the se-
quences

C∗ : 0 → A1

f1

→ B1 → 0

D∗ : 0 → A2

f2

→ B2 → 0

E∗ : 0 → A3

f3

→ B3 → 0.

since fi ◦ ι = f1(0) = 0 and 0 ◦ fi = 0 these sequences are actually chain
complexes, from which we wish to define the short sequence

0 → C∗
g
→ D∗ h

→ E∗ → 0,

where the chain maps g and h are the maps between columns of the original
diagram. This sequence is then exact since each row of the original diagram is
exact. Thus we can form the long exact cohomology sequence

0 → H0(C∗)
g∗

→ H0(D∗)
h∗

→ H0(E∗)
∂∗

→

→ H1(C∗)
g∗

→ H1(D∗)
h∗

→ H1(E∗)
∂∗

→ 0.

Now we have

H0(C∗) = Ker f1

H0(D∗) = Ker f2

H0(E∗) = Ker f3,
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and likewise

H1(C∗) = B1/Im f1 = Cok f1

H1(C∗) = B2/Im f2 = Cok f2

H1(C∗) = B3/Im f3 = Cok f3,

which establishes the result.

Problem 4.3 In the commutative diagram

0 0 0 0

0 A0,0 A1,0 A2,0 A3,0 · · ·

0 A0,1 A1,1 A2,1 A3,1 · · ·

0 A0,2 A1,2 A2,2 A3,2 · · ·

0 A0,3 A1,3 A2,3 A3,3 · · ·

...
...

...
...

the horizontal (A∗,q) and the vertical (Ap,∗) are chain complexes where Ap,q = 0
if either p < 0 or q < 0. Suppose that

Hp(A∗,q) = 0 for q 6= 0 and all p.
Hq(Ap,∗) = 0 for p 6= 0 and all q.

Construct isomorphisms Hp(A∗,0) → Hp(A0,∗) for all p.

If we denote by dij
lm the map from Ai,j to Al,m, then commutativity of the

diagram gives d01
11 ◦ d00

01 = d10
11 ◦ d00

10. So these two maps have equal kernels
but, since the second map of each composition is injective (H0 of the first row
and column are zero), the kernels of the first maps are isomorphic, and thus
H0(A0,∗) = H0(A∗,0).

This is far as I’ve been able to get.
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Problem 4.4 Let 0 → A0 d0

→ A1 d1

→ · · ·
dn−1

→ An → 0 be a chain complex and

assume that dimAi < ∞. The Euler characteristic is defined by

χ(A∗) =
n

∑

i=0

(−1)i dimAi.

Show that χ(A∗) = 0 if A∗ is exact. Show that the sequence

0 → Hi(A∗) → Ai/Imdi−1 di

→ Im di → 0

is exact and conclude that

dimAi − dim Im di−1 = dimHi(A∗) + dim Im di.

Show that

χ(A∗) =

n
∑

i=0

(−1)i dimHi(A∗).

That χ(A∗) = 0 when A∗ is exact was proved in class - the alternating sum
of dimensions of spaces in an exact sequence is zero (provided they are all finite).

Next we need to show that the sequence

0 →
Ker di

Im di−1
→֒

Ai

Im di−1

di

→ Im di → 0,

is exact. We have Ker di ⊂ Ai so that the corresponding quotients are subsets
and we can include the former in the latter. The inclusion is injective so the
first map is exact.

Next, let [x] ∈ Ai/Im di−1. We want to define di([x]) = di(x). But we have

di(x) = di(y + di−1(z)) = di(y) + di(di−1)(z) = di(y),

so that the map does not depend on representative. So, let x ∈ Im di, then
x = di(y) for some y ∈ Ai. But then

di([y]) = di(y) = x,

so that the map di is surjective.
Finally we need to show exactness in the middle. Suppose [x] ∈ Im f .

Im di−1 ⊂ Ker di so that x ∈ Ker di. Then

di([x]) = di(x) = 0,

so that [x] ∈ Ker di. Conversely, suppose [x] ∈ Kerdi. Then 0 = di([x]) = di(x),
so that x ∈ Ker di. But then

[x] ∈ Ker di/Imdi−1 = Im f.
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Thus the sequence is exact.
Since the sequence above is short exact, we have immediately that

dim(Hi(A∗)) + dim(Im di) = dim(Ai/Imdi−1)

= dim(Ai) − dim(Im di−1).

Thus we can write
n

∑

i=0

(−1)i dim(Ai)

as

n
∑

i=0

(−1)i
(

dim(Hi(A∗)) + dim(Im di) + dim(Im di−1)
)

=

n
∑

i=0

(−1)i dim(Hi(A∗)) +

n
∑

i=0

(−1)i dim(Im di) +

n
∑

i=0

(−1)i dim(Im di−1).

But, we can write the last sum as

n
∑

i=0

(−1)i dim(Im di−1) =

n
∑

i=1

(−1)i dim(Im di−1)

=

n−1
∑

j=0

(−1)j + 1 dim(Im dj)

= −

n−1
∑

j=0

(−1)j dim(Im dj),

= −

n
∑

j=0

(−1)j dim(Im dj),

where the last line follows since dim(Im dn) = 0. Thus the final two sums above
cancel and we are left with

n
∑

i=0

(−1)i dim(Ai) =
n

∑

i=0

(−1)i dim(Hi(A∗)).

Problem 4.5 Associate to two composable linear maps

f : V1 → V2, g : V2 → V3,

an exact sequence

0 → Ker f → Ker (g ◦ f) → Ker g →

→ Cok f → Cok (g ◦ f) → Cok g → 0.

5



More explicitly, we wish to construct the exact sequence

0 → Ker (f) →֒ Ker (g ◦ f)
f ′

→ Ker (g)
π1

→

→ V2/Im (f)
g′

→ V3/Im (g ◦ f)
π2

→ V3/Im (g) → 0,

where the first map is the inclusion which is injective. We note that for x ∈

Ker (f) that (g ◦ f)(x) = g(f(x)) = g(0) = 0 so that x ∈ Ker (g ◦ f) and
the inclusion is defined. f ′ is the restriction of f to the indicated domain. If
x ∈ Ker (g ◦ f) then f(x) is in Ker (g) so the map is well defined. g′ is the map
given by g′([x]) = g(x), which is well defined since

[g(x)] = [g(y + f(z))] = [g(y) + g(f(z))] = [g(y)].

The map π1 is the map sending x to its equivalence class in the quotient
Ker (g)/Im (f ′). This map is well defined since for x ∈ Ker (g ◦ f) we have

0 = (g ◦ f)(x) = g(f(x)) = g(f ′(x)),

so that f ′(x) ∈ Ker (g), that is, Im (f ′) ⊂ Ker (g). Finally, since Im (g ◦ f) ⊂

Im (g) we have V3/Im (g) ⊂ V3/Im (g◦f) and π2 is projection onto this subspace,
which is surjective. It remains to prove exactness at the middle four steps.

First, since Ker (f) ⊂ Ker (g ◦ f), Ker (f ′) = Ker (f) so Im ι = Ker (f ′).
Next, if π1(x) = 0 then x ∈ Im (f ′) since [0] = Im (f ′). Conversely, if

x ∈ Im f then π1(x) = [x], where [x] = x + Im (f) = Im (f) so that [x] = 0.
Next, let x ∈ Ker (g), then g′(π1(x)) = g′([x]) = g(x) = 0, so [x] ∈ Ker (g′).

Conversely, if [x] ∈ Ker (g′) then 0 = g′([x]) = g(x), so x ∈ Ker (g), but then
[x] ∈ Im (π1).

Finally, let [x] ∈ Ker (π2). Then x ∈ Im (g), that is, x = g(y) for some y.
But then [g′[y]] = [g(y)] = [x], so that [x] ∈ Im (g′). Conversely, if [x] ∈ Im (g′)
then x ∈ Im (g) and π2([x]) = 0.
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Cohomology Homework: Chapters 5 & 6

Daniel J. Cross

December 7, 2006

Problem 5.3 Can R
2 be written as R

2 = U ∪ V where U and V are open

connected sets such that U ∩ V is disconnected?

We have part of the Mayer-Vietoris sequence

0 → H0(U ∪ V ) → H0(U) ⊕ H0(V ) → H0(U ∩ V ) → H1(U ∪ V ),

which becomes

0 → R → R ⊕ R
f
→ H0(U ∩ V ) → 0,

since U , V , and R
2 are all connected, and we know H1(R2) = 0. This sequence

is exact so the map f must be onto, so dimH0(U ∩ V ) ≤ 2, in particular it is
finite. Thus we have

dim R − dim R ⊕ R + dimH0(U ∩ V ) = 0,

or dimH0(U ∩ V ) = 1, so that U ∩ V must be connected. This result holds for
each R

n, since their respective cohomology groups are isomorphic.

Problem 5.4 Suppose p 6= q belong to R
n. A closed set A ⊂ R

n is said to

separate p from q when p and q belong to two different connected components of

R
n − A.

Let A and B be two disjoint closed subsets of R
n. Given two distinct points

p and q in R
n − (A ∪ B), show that if neither A or B separates p from q, then

A ∪ B does not separate p from q.

Denote the open complements by Ã = R
n − A and B̃ = R

n − B. We have

Ã ∪ B̃ = (Rn − A) ∪ (Rn − B) = R
n − (A ∩ B) = R

n.

Suppose that both consist of a single connected component. Then we have part
of the Mayer-Vietoris sequence

0 → H0(Ã ∪ B̃) → H0(Ã) ⊕ H0(B̃) → H0(Ã ∩ B̃) → H1(Ã ∪ B̃),
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which becomes

0 → R → R ⊕ R → H0(Ã ∩ B̃) → 0,

which shows that H0(Ã ∩ B̃) is 1-dimensional and thus consists of a single
connected component. Since all the complements consists of a single connected
component, none of them separate points which proves the theorem in this case.
The full result will follow by showing that it can always be reduced to the present
special case.

For more general sets A and B we can write them as a (possibly uncountable)
sum over connected components

A =
⋃

Ai

B =
⋃

Bj ,

and we can write the complement as a (countable) sum over connected compo-
nents

Ã =
⋃

Ãi

B̃ =
⋃

B̃j .

Now, since A ∩ B = ∅ each connected component of one must be contained
within a connected component of the complement of the other, that is, for each
j there exists and i such that

Bj ⊂ Ãi

Aj ⊂ B̃i.

Now, suppose that the points p and q are contained in the sets Ãi1 and B̃j1

(they are not separated). Then both points are contained in the intersection
Ãi1 ∩B̃j1 . We will now removed the extraneous components of the complements
of the sets A and B without changing the relevant intersection of the connected
components containing the points.

For every i 6= i1, add the component Ãi to A, creating a new closed set
which we will continue to call A. This does not change Ai1 , so Ãi1 ∩B̃j1 remains

unchanged. Now, such a component of Ã may contain a component Bj of B.
If so, remove this component from the set B, obtaining a new closed set which
will continue to call B. This may change the set B̃i1 , but not its intersection
with Ãi1 , since the change is happening in an open set Ãi, i 6= i1. Repeat this
process until Ãi1 is the only remaining component of the complement of A.

Now we do the same procedure with the components of the complement of B
which also doesn’t change the desired intersection of sets by the same argument
as for A. We continue until the complement has the one remaining component
B̃i1 . Then each complement has exactly one component and the result follows
from the special case.
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Problem 6.1 Show that “homotopy equivalence” is an equivalence relation in

the class of topological spaces.

First we need to first show that for any topological space X , X ≃ X . Let
f = g = idX , then

f ◦ g = g ◦ f = idX ◦ idX = idX ≃ idX .

Next we need to show that if X ≃ Y , then Y ≃ X , but this is obvious from
the definition.

Finally we need to show that if X ≃ Y and Y ≃ Z that X ≃ Z. We first need
the following result. Suppose we have f ≃ f ′, then g ◦ f ◦ h ≃ g ◦ f ′ ◦ h, where
g and h are continuous maps. Let F (x, t) be the homotopy with F (x, 0) = f(x)
and F (x, 1) = f ′(x), then define a new homotopy G(x, t) by G(x, t) = g(x) ◦
F (x, t) ◦ h(x). Then we have G(x, 0) = g(x) ◦F (x, 0) ◦ h(x) = g(x) ◦ f(x) ◦ h(x)
and G(x, 1) = g(x) ◦ F (x, 1) ◦ h(x) = g(x) ◦ f ′(x) ◦ h(x). G(x, t) is continuous
since it is the composition of continuous maps.

Now, we have the following maps

f : X → Y g ◦ f ≃ idX

g : Y → X f ◦ g ≃ idY

f ′ : Y → Z g′ ◦ f ′ ≃ idY

g′ : Z → Y f ′ ◦ g′ ≃ idZ .

We will define the maps f ′′ : X → Z and g′′ : Z → X by

f ′′ = f ′ ◦ f

g′′ = g ◦ g′,

then we have

g′′ ◦ f ′′ = (g ◦ g′) ◦ (f ′ ◦ f)

= g ◦ (g′ ◦ f ′) ◦ f

≃ g ◦ idY ◦ f

= g ◦ f

≃ idX ,

f ′′ ◦ g′′ = (f ′ ◦ f) ◦ (g ◦ g′)

= f ′ ◦ (f ◦ g) ◦ g′

≃ f ′ ◦ idY ◦ g′

= f ′ ◦ g′

≃ idZ ,

where we have used our result above.
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Problem 6.2 Show that all continuous maps f : U → V that are homotopic to

a constant map induce the 0-map f∗ : Hp(V ) → Hp(U) for p > 0.

Since homotopic maps induce the same maps on cohomology groups (Thm. 6.8)
we need only check the case when f is a constant map. So, let f be the constant
map f(x) = y0 for every x. The induced map on cohomology is given by

Hp(f) : [ω] → [f∗(ω)],

where the induced map on (p-) forms is given by

(f∗ω)x(ξ1, . . . , ξp) = ωf(x)(Dxf(ξ1), . . . , Dxf(ξp)).

Now, if p = 0 this reduces to

(f∗ω)x = ωf(x),

the constant 0-form. However, if p > 0, then Dx = 0 since the map f is constant,
and we have

(f∗ω)x(ξ1, . . . , ξp) = ωf(x)(0, . . . , 0) = 0.

Thus [f∗(ω)] = [0] = 0, so that Hp(f) is the zero map for p > 0.

Problem 6.3 Let p1, . . . , pk be k distinct points in R
n, n ≥ 2. Show that

Hd(Rn − {p1, . . . , pk}) ∼=







R
k for d = n − 1

R for d = 0
0 otherwise.

We will first take the case n = 1 and suppose one point p is missing (k = 1).
Then we set U = (−∞, p) and V = (p,∞), which gives R − {p} = U ∪ V . The
Mayer-Vietoris sequences gives

0 → H0(U ∪ V ) → H0(U) ⊕ H0(V ) → H0(U ∩ V ) →
→ H1(U ∪ V ) → H1(U) ⊕ H1(V ) → H1(U ∩ V ) → 0,

which becomes, since U and V are star-shaped with empty intersection,

0 → H0(U ∪ V ) → R ⊕ R → 0 →
→ H1(U ∪ V ) → 0 → 0 → 0,

so that dimH0(U ∪ V ) = 2 and dimH1(U ∪ V ) = 0.
Now we proceed by induction on k to show that H1 = 0 for R minus a finite

number of points (we already know dimH0 = k + 1, the number of connected
components, but we’ll get this too).

Let X = R − {p1, . . . , pk}. We can write X as the union of k + 1 disjoint
open intervals separated by the {pi}. In particular, we write X = U ∪V , where

U = (−∞, p1) ∪ (p1, p2) ∪ · · · ∪ (pk−1, pk),
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and
V = (pk,∞),

where we have assumed without loss of generality that pi < pj for i < j. But
then Mayer Vietoris gives

0 → H0(U ∪ V ) → H0(U) ⊕ H0(V ) → H0(U ∩ V ) →
→ H1(U ∪ V ) → H1(U) ⊕ H1(V ) → H1(U ∩ V ) → 0,

which becomes

0 → H0(U ∪ V ) → R ⊕ R
k → 0 →

→ H1(U ∪ V ) → 0 → 0 → 0,

using the induction hypothesis on V which is a union of k disjoint intervals.
Now we have the two exact sequences

0 → H0(U ∪ V ) → R ⊕ R
k → 0,

and
0 → H1(U ∪ V ) → 0.

Thus we get that H0(U ∪ V ) ∼= R
k+1 and H1(U ∪ V ) ∼= 0.

Now that we know the cohomology groups of R minus a finite number of
points, we will exploit Prop 6.11 to extend the result to R

n. First, since the
number of points is finite we can always find a diffeomorphism taking those
points onto the subspace R

n−1 ⊂ R
n, and we can calculate assuming this rear-

rangement since cohomology groups are diffeomorphism invariants. We will now
assume our space to be replaced with this diffeomorphic image. Let A stand for
the set up k points removed from the subspace R

n−1 of R
n.

First we extend to R
2. Prob 6.11 tells us that

H2(R2 − A) ∼= H1(R − A) ∼= 0

H1(R2 − A) ∼= H0(R − A)/R ∼= R
k+1/R ∼= R

k

H0(R2 − A) ∼= R,

which is the intended result. Next we extend to R
3

H3(R3 − A) ∼= H2(R2 − A) ∼= 0

H2(R3 − A) ∼= H1(R2 − A) ∼= R
k

H1(R3 − A) ∼= H0(R2 − A)/R ∼= R/R ∼= 0

H0(R3 − A) ∼= R,

and at this point the further induction to R
n is clear: H0 stays R, H1 will be

R/R ∼= 0, Hn−2(Rn−1 − A) → Hn−1(Rn − A) ∼= R
k, and the rest stay zero,

which establishes the result.

Problem 6.4 Suppose that f, g : X → Sn−1 are two continuous maps, such

that f(x) and g(x) are never antipodal. Show that f ≃ g.
Show that every non-surjective map f : X → Sn−1 is homotopic to a con-

stant map.
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Regard the n − 1 sphere as a subspace of Euclidean space:

Sn−1 = {y ∈ R
n : |y| = 1}.

We intend to construct a homotopy F : X × [0, 1] → Sn−1 between f and g by

F (x, t) =
(1 − t)f(x) + tg(x)

√

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)
,

where 〈 , 〉 is the Euclidean inner product. We then have

F (x, 0) =
f(x)

√

1 + 2(0)(1)(〈f(x), g(x)〉 − 1)
= f(x),

and

F (x, 1) =
g(x)

√

1 + 2(2)(0)(〈f(x), g(x)〉 − 1)
= g(x),

so we need to show the map is well defined.
First, we must have the expression under the square root be non-negative.

We have
−1 ≤ 〈f(x), g(x)〉 ≤ 1
−2 ≤ 〈f(x), g(x)〉 − 1 ≤ 0

−1/2 ≤ t(1 − t)(〈f(x), g(x)〉 − 1) ≤ 0
−1 ≤ 2t(1 − t)(〈f(x), g(x)〉 − 1) ≤ 0

0 ≤ 1 + 2t(1 − t)(〈f(x), g(x)〉 − 1) ≤ 1,

where the 3rd line follows since 0 ≤ t(1−t) ≤ 1/4, since 0 ≤ t ≤ 1. Thus we only
have trouble when the expression is 0, which is when 〈f(x), g(x)〉 = −1, that
is, when f(x) and g(x) are antipodal, but by hypothesis this does not occur, so
our map is continuous.

Second, we must have this map actually map into the sphere. We have for
|F (x, t)|

∣

∣

∣

∣

∣

(1 − t)f(x) + tg(x)
√

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

∣

∣

∣

∣

∣

=

〈

(1 − t)f(x) + tg(x)
√

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)
,

(1 − t)f(x) + tg(x)
√

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

〉

=
(1 − t)2〈f(x), f(x)〉 + 2t(1 − t)〈f(x), g(x)〉 + t2〈g(x), g(x)〉

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

=
(1 − t)2 + 2t(1 − t)f(x) · g(x) + t2

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

=
1 − 2t(1 − t) + 2t(1 − t)〈f(x), g(x)〉

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

=
1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

1 + 2t(1 − t)(〈f(x), g(x)〉 − 1)

= 1,
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where we used the fact that 〈f(x), f(x)〉 = 〈g(x), g(x)〉 = 1, since these maps
are into the sphere. So our map does map into the sphere and is well defined.

As a corollary to this we prove the second part of the problem. If f is a
non-surjective map into the sphere, then there exists a point y0 ∈ Sn−1 such
that f−1(y0) = ∅. Define the constant map g : X → Sn−1 by g(x) = y1 for
every x, where y1 is antipodal to y0. Then f(x) and g(x) are never antipodal
since y0 isn’t in the image of f , so we can construct a homotopy between them
as outlined in the first half of the problem.

Problem 6.5 Show that Sn−1 ≃ R
n − {0}. Show that two continuous maps

f0, f1 : R
n − {0} → R

n − {0},

are homotopic iff their restrictions to Sn−1 are.

That that these two spaces are homotopic was proved in class.
Now, suppose that the two maps f0 and f1 are homotopic. For clarity of

notation let X = R
n − {0} and Y = Sn−1. We can regard the restrictions of

these maps as being the the identity on X restricted to Y and the composed
with the maps themselves:

f0|Y = f0 ◦ idX |Y

and
f1|Y = f1 ◦ idX |Y ,

which are both compositions of continuous maps, so we have

f0 ≃ f1 → f0 ◦ idX |Y ≃ f1 ◦ idX |Y ,

or f0|Y ≃ f1|Y . There is nothing here particular to the case at hand - restrictions
of homotopic maps are homotopic.

One the other hand, suppose the restricted maps are homotopic and let
g : Y → X and f : X → Y be the maps defining the homotopy equivalence.
Then we have

g ◦ f ≃ idX

fi ◦ (g ◦ f) ≃ fi

But, g ◦ f is in this case the map

x 7→
x

|x|
,

mapping X onto Y . Thus we can regard fi ◦ (g ◦ f) as the restriction of fi to
Y . Thus fi|Y ≃ fi, and we have

f1 ≃ f1|Y ≃ f2|Y ≃ f2,

since the restrictions are homotopic by hypothesis.
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Problem 6.6 Show that Sn−1 is not contractible.

A space is contractible if it has the same homotopy type as a point, or equiv-
alently R

m. Thus a space is contractible only if it has the same cohomology
groups as R

m. But we now know that Sn−1 ≃ R
n − {0}, so we have (n ≥ 2)

Hp(Rn − {0}) ∼= Hp(Sn−1) ∼=

{

R p = 0, n − 1
0 otherwise,

But, on the other hand, from Thm. 6.13 we have,

Hp(Rm) ∼=

{

R p = 0
0 otherwise,

so these groups are not all isomorphic (there are two nontrivial groups for the
first space, only one for the second).

Finally, for the case n = 1 we need to compute the groups for R−{0}, which
has two connected components, so H0(R − {0}) = R ⊕ R, so the “0-sphere” is
not contractible either.
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Cohomology Homework: Chapter 7

Daniel J. Cross

December 13, 2006

Problem 7.1 Show that R
n does not contain a subset homeomorphic to Dm

when m > n.

Let ∆ ⊆ R
n and φ : Dm → ∆ a homeomorphism with Dm ⊂ R

m. Then the
restriction of φ to the interior of Dm is a homeomorphism onto the interior of

∆. But the interior of Dm is homeomorphic to R
m, so we have

◦

∆∼= R
m.

However, we can consider the inclusion ι :
◦

∆→֒ R
m, which maps

◦

∆ homeo-
morphically onto the proper subspace R

n ⊂ R
m. But this set is homeomorphic

to R
m so must be open by invariance of domain, which is a contradiction since

it is a subset of a proper subspace.

Problem 7.2 Let Σ ⊆ R
n be homeomorphic to Sk (1 ≤ k ≤ n − 2). Show that

Hp(Rn − Σ) ∼=

{

R for p = 0, n − k − 1, n − 1
0 otherwise.

By Theorem 7.8 we have the isomorphisms

Hp(Rn − Σ) ∼= Hp(Rn − Sk),

so we will compute the latter groups. We will further consider Sk ⊂ R
k+1 ⊂ R

n.
First we have

Hp(Rn − Sn−1) ∼= Hp(
◦

Dn) ⊕ Hp(Rn − Dn).

The first set is star shaped, so we get R for p = 0 and 0 otherwise, while the
second set is homeomorphic to R

n − {0}, so we get R for p = 0, n − 1 and 0
otherwise, so all together we get

Hp(Rn − Sn−1) ∼=







R ⊕ R p = 0
R p = n − 1
0 otherwise.

Next will iteratively apply Proposition 6.11 to extend this result. First we
get

Hp(Rn+1 − Sn−1) ∼=

{

R p = 0, 1, n
0 otherwise,
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and more generally,

Hp(Rn+a − Sn−1) ∼=

{

R p = 0, a, n + a − 1
0 otherwise.

In the present case we set n− 1 = k and m = n+ a = n+ k− 1. Thus a = k− 1
and n + a − 1 = (m − a) + a − 1 = m − 1, so we get

Hp(Rm − Sk) ∼=

{

R for p = 0, m − k − 1, m − 1
0 otherwise.

Problem 7.3 Show that there is no continuous map g : Dn → Sn−1 with

g|Sn−1 ≃ idSn−1 .

We follow the proof of Lemma 7.2 except that the function g satisfies g|Sn−1 ≃
idSn−1 . Then the function g(tr(x)) defines a homotopy between g(r(x)) and
g(0), a constant map. Thus we have

g(0) ≃ g(r(x)) ≃ id ◦ r(x) = r(x),

so that we still obtain a homotopy between r(x) and a constant map, so the
rest of the argument still holds.

Problem 7.4 Let f : Dn → R
n be a continuous map and let r ∈ (0, 1) be given.

Suppose for all x ∈ Sn−1 that ||f(x) − x|| ≤ 1 − r. Show that f(Dn) contains

the closed disc with radius r and center 0.

Suppose the conclusion false, then there exists a point x0 with ||x0|| ≤ r and
x0 6= f(x) for any x ∈ Dn. As in the Brouwer Fixed Point Theorem, we we
wish to define a function g(x) to be the intersection of the half line from x0 to
f(x) with Sn−1, which is well-defined as x0 and f(x) are always distinct. The
function g(x) is defined as

g(x) = x0 + t
x0 − f(x)

||x0 − f(x)||
,

with t given so that ||g(x)|| = 1, that is

t = −x0 · u +
√

1 − ||x0||2 + (x0 · u)2,

where

u =
x0 − f(x)

||x0 − f(x)||
,

and thus g(x) is continuous.
If we can show that the restriction of g(x) to Sn−1 is homotopic to the

identity then by problem 7.3 we have a contradiction, so that g(x) cannot exist
and neither the point x0. We prove this next.

Let x ∈ Sn−1 and let Dx be the solid ball of radius 1− r centered on x, and
let D0 be the solid ball of radius r centered on 0. Then D0 and Dx intersect in
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an unique point p, and moreover this intersection defines a n − 1 dimensional
tangent hyperplane in R

n ≃ R
n−1 × R, and let z be the coordinate function in

the direction orthogonal to the hyperplane oriented so that z(p) < 0 (z(p) 6= 0
since D0 has radius r > 0). Then for every y ∈ Dx, y 6= p, z(y) < z(p) < 0, in
particular z(x) < 0 and z(f(x)) < 0.

Now, if x0 = p then f(x) 6= p and z(x0) = z(p) > z(f(x)). Likewise if x0 6= p
then z(x0) > z(p) ≥ z(f(x)). Thus in either case we will have z(x0) > z(f(x)),
but z(f(x)) < 0, so that z(g(x)) < 0 as well. Thus x and g(x) are always on the
same side of the hyperplane, so, in particular, they are never antipodal points.
Thus by problem 6.4 g(x) is homotopic to the identity on Sn−1.

Problem 7.5 Assume given two injective continuous maps α, β : [0, 1] → D2

such that
α(0) = (−1, 0), α(1) = (1, 0),
β(0) = (0,−1), β(1) = (0, 1).

Prove that the two curves α and β intersect.

We will use α and β to denote the maps and their images in D2. α may be
in the boundary of D2 at places but we can assume that α ∩ β(1) = ∅. Thus
there must exist a neighborhood N of β(1) with B ∩ α = ∅. Moreover there
are points t1, t2 ∈ [0, 1] with the property that α(t1), α(t2) ∈ S1, α(t) /∈ S1 for
t1 < t < t2, and β(1) is between α(t1) and α(t2). We have, at the least, that
t1 = 0 and t2 = 1.

We consider S1 to be parametrized by angle in the usual way and let θ1 and
θ2 be angles corresponding to the points α(t1) and α(t2) respectively. We note
that θ1 > θ2.

Now we wish to define a map φ : S1 → D2 by

φ(θ) =







α (T1t2 + (1 − T1)t1) 0 ≤ θ ≤ θ2

(cos(θ), sin(θ)) θ2 ≤ θ ≤ θ1

α (T2t2 + (1 − T2)t1) θ1 ≤ θ ≤ 2π,

where we have

T1 =
θ − θ1 + 2π

θ2 − θ1 + 2π

T2 =
θ − θ1

θ2 − θ1 + 2π
.

This function is certainly piecewise continuous, but it’s easy to see that
the pieces agree at their points of overlap (including φ(0) = φ(2π), so φ is
continuous. Moreover, it is injective, so the image, Σ, of φ is homeomorphic to
S1 (I suppose this needs further justification - such as showing that φ is an open
map, sending open sets to (relatively) open sets in the image).

Thus, by the Jordan-Brouwer Separation Theorem, R
n−Σ has two connected

components U1 and U2, the former bounded, the latter unbounded, and Σ is
their common boundary. Moreover we have that Σ∩∂D2 = φ(θ) for θ2 ≤ θ ≤ θ1.
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We have β(1) ∈ Σ and β(0) ∈ U2. There is a t0 ∈ (0, 1) such that for every
t < t0, β(t)∩Σ = ∅. We can suppose that β(t0) 6= α(t1), α(t2), so that for some
t′ < t0 we have β(t′) ∈ U1. Thus we have a curve from U1 to U2 which must
intersect the boundary Σ along φ(θ) for 0 ≤ θ ≤ θ1 or θ1 ≤ θ ≤ 2π, that is, it
must intersect along α.
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Cohomology Homework: Various Problems

Daniel J. Cross

January 6, 2010

Problem 8.4 Set Tn = R
n/Z

n, i.e. the set of cosets for the subgroup Z
n of

R
n with respect to vector addition. Let π : R

n → Tn be the canonical map

and equip Tn with the quotient topology. Show that Tn is a compact topological

manifold of dimension n. Construct a differentiable structure on Tn, such that

π becomes smooth and every p ∈ R
n has an open neighborhood that is mapped

diffeomorphically onto an open set in Tn by π. Prove that T 1 is diffeomorphic

to S1.

To show Tn is a topological manifold we must show that it is Hausdorff,
second countable, and locally homeomorphic to R

n. We first show π is a local
homeomorphism. In the quotient a ∼ b iff a − b is a vector with integer coef-
ficients. It follows that if ||a − b|| < 1 then a ∼ b iff a = b. Thus on any open
ball of radius 1/2 of any point p ∈ R

n, π is injective and a local inverse exists.
To show π is a local homeomorphism we need only show that the local inverses
π−1 are continuous, i.e. that π is an open map. Let U ∈ R

n be open. We need
to show V = π(U) is open. But in a domain of injectivity, U = π−1(V ) is open,
thus V is open by definition of quotient topology. Thus π is open and therefore
a local homeomorphism.

Now we show Tn is Hausdorff. Actually, the maximal domain on which π
is a local homeomorphism are hypercubes of side length one. Let p 6= q ∈ Tn.
Choose pre-images of p and q within distance one of each other and consider
a domain of injectivity containing those pre-images. Since R

n is Hausdorff
there are disjoint open sets U and V separating those pre-images. They can be
assumed small enough to be contained in the domain of injectivity. Since π is a
local homeomorphism π(U) and π(V ) separate p and q.

Finally, we show Tn is second countable. Let U ∈ Tn be open. Then
V = π−1(U) is open in R

n. But R
n is second countable so V can be expressed

in this countable basis. The image under π of these basis elements gives U .
Thus the image under π of the basis for R

n yields a countable basis for Tn.
Thus Tn is a topological manifold.

Next we show that Tn is compact. Suppose that ∪Uα is an open cover of Tn.
The pre-image under π of that cover covers R

n. Now any closed hypercube of
R

n of side length one is a compact subset that maps onto Tn under π. Choose
a finite subcover of the hypercube. Its image under π provides a finite subcover
for the original cover of Tn.
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An atlas for Tn can be constructed using domains of injectivity for π. The
overlap maps are of the form π−1 ◦ π and can be seen to correspond to transla-
tions in R

n, which are smooth. The map π is smooth if the composition π−1 ◦π
with a chart map is smooth, which we have already showed.

Finally we show T 1 ∼= S1. Consider S1 as the unit complex numbers, S1 =
{z ∈ C : ||z|| = 1}, so that z = eiθ, θ ∈ R. Define a map φ : T 1 → S1 by
φ(x) = exp 2πiπ−1(x). This is well defined for if y1 and y2 are both pre-images
of x under π then y2 = y1 + a, a ∈ Z and

φ(x) = exp 2πiy2

= exp 2πi(y1 + a)

= exp 2πiy1 + exp 2πia

= exp 2πiy1.

Similarly it follows that φ is injective and it is easy to show φ is surjective.
It is tedious but straightforward to show that φ is both continuous and smooth,
from which the result follows since T 1 is compact.

Problem 9.9 In the vector space M = Mn(R) of real-valued n×n matrices we

have the subspace of symmetric matrices Sn. Define a smooth map φ : M → Sn

by

φ(A) = AtA,

where At is the transpose of A. Note that the pre-image φ−1(I) of the identity

matrix is exactly the set of orthogonal matrices O(n). Show that for A ∈ M and

B ∈ M we have

DAφ(B) = BtA + AtB.

Apply Ex. 9.6 to show that O(n) is a differentiable submanifold of Mn(R).

Interpreting tangent vectors as velocity vectors to curves we have

DAφ(B) =
d

dt

∣

∣

∣

∣

0

φ(γ(t)),

where γ is any curve that satisfies γ(0) = A and γ̇(0) = B. Since M is the set
of all matrices the curve γ(t) = A + tB will suffice. We then have

Daφ(B) =
d

dt

∣

∣

∣

∣

0

(A + tB)
t
(A + tB) = AtB + BtA.

Now O(n) = φ−1(I) is a submanifold if φ is a submersion. Now Dφ : TAM →
Tφ(A)Sn. Since M ≃ R

2n, TAM ∼= M . Similarly Sn is a linear subspace of M
(since for any symmetric S1, S2, aS1 + bS2 is symmetric for real a, b) we have
TBSn

∼= Sn. So we must show that for any symmetric matrix S there is a
solution B to the equation AtB + BtA = S. If we write B = AC then we have

AtB + BtA = At(AC) + (CtAt)A = 2C,

so we are done if we take C = S/2 since then Ct = C.
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Problem 9.10 A Lie Group G is a smooth manifold, which is also a group,

such that both

µ : G × G → G; µ(g1, g2) = g1g2,

and

i : G → G; i(g) = g−1,

are smooth. Show that the group O(n) of orthogonal n × n matrices is a Lie

group.

The previous exercise showed O(n) is a differentiable manifold. It is a group
under matrix multiplication since the determinant condition is preserved. It
remains to show that the group operations are smooth. But these are rational
analytic functions in the entries of the matrix (Cramer’s rule for the inverse),
and so smooth.

Problem 10.1 Let π : R
2 → T 2 be as in Ex. 8.4, and let

U1 = π (R × (0, 1)) , U2 = π

(

R ×

(

−
1

2
,
1

2

))

.

Show that U1 and U2 are diffeomorphic to S1 × R, and that U1 ∩ U2 has two

connected components, which are both diffeomorphic to S1 × R. Note that U1 ∪
U2 = T 2. Use the Mayer-Vietoris sequence and Cor. 10.14 to show that

H0(T 2) ≃ H2(T 2) ≃ R and H1(T 2) ≃ R
2.

It is apparent from 8.4 that T 2 ∼= S1 × S1 and that π commutes with the
Cartesian product. Hence we can write π(A × B) = π1(A) × π1(B), in an
obvious notation. Now π1(R) = S1. On the other hand (0, 1) ∼= R, but is
equal to a maximal domain of injectivity of π2, hence the image of π2((0, 1)) is
diffeomorphic to R, and the product is therefore diffeomorphic to S1×R, which
has the homotopy type of S1.

If we take (0, 1) as fundamental domain for the second factor then (0, 1)
and π−1

2 π2(−1/2, 1/2) have two overlapping regions, (0, 1/2) and (1/2, 1), both
intervals diffeomorphic to R. Therefore the images under π2 are two disjoint
open sets diffeomorphic to R in S1. The intersection of U1 and U2 are therefore
the Cartesian product of these intervals with S1.

The Mayer-Vietoris sequence for U1, U2, U1 ∩ U2, and U1 ∪ U2
∼= T 2 is

0 −−−−→ H0(T 2) −−−−→ H0(U1) ⊕ H0(U2) −−−−→ H0(U1 ∩ U2) −−−−→

−−−−→ H1(T 2) −−−−→ H1(U1) ⊕ H1(U2) −−−−→ H1(U1 ∩ U2) −−−−→

−−−−→ H2(T 2) −−−−→ H2(U1) ⊕ H2(U2) −−−−→ H2(U1 ∩ U2) −−−−→ 0.

Since U1 and U2 have the homotopy type of S1 their cohomology groups are
given by H0(Ui) ∼= H1(Ui) ∼= R and H2(Ui) ∼= 0. Since U1 ∩ U2 is the disjoint
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union of two sets, each diffeomorphic to either U1 or U2, its cohomology groups
is the direct sum of the groups of each Ui. The sequence becomes

0 −−−−→ H0(T 2) −−−−→ R
2 −−−−→ R

2 −−−−→ H1(T 2)

−−−−→ R
2 −−−−→ R

2 −−−−→ H2(T 2) −−−−→ 0,

and there is not yet enough information to determine the relevant groups. How-
ever, since the alternating sum of dimensions must vanish we have dimH0 +
dim H2 = dim H1.

Now by Cor. 10.14 if a space M is a compact and connected manifold then
Hn(M) ∼= R. A further corollary is that for M compact Hn(M) ∼= H0(M), since
the latter counts connected components. This can be considered a special case
of Poincaré duality. It follows that dimH0 = dim H2. Since T 2 is connected we
have H0(T 2) ∼= R, and the result follows immediately.

Problem 10.2 In the notation of Ex. 10.1 we have smooth submanifolds

C1 = π(R × {a}), C2 = π({b} × R), (a, b ∈ R),

of T 2 which are diffeomorphic to S1. They are given the orientations induced

by R. Show that the map

Ω1(T 2) → R
2; ω 7→

(
∫

C1

ω,

∫

C2

ω

)

,

induces an isomorphism H1(T 2) → R
2. Show that this isomorphism is indepen-

dent of a and b.

It follows by Stoke’s theorem that this map is well defined on cohomology
since the integration domains are boundaryless. It is manifestly linear, thus a
homomorphism. It remains to show it is injective. The kernel consist of those
closed one forms ω such that

∫

C1

ω =
∫

C2

ω = 0. Now

∫

C

ω =

∫

π−1(C)

π∗ω (1)

=

∫

π−1(C)

fdx + gdy (2)

=

∫ 1

0

f(γ(t))
dx

dt
dt + g(γ(t))

dy

dt
dt, (3)

where the functions f and g must both be periodic in (x, y) with period one.
For C1 we take γ = (t, b) and for C2 γ = (a, t) with t ∈ [0, 1]. In the first

case the integral reduces to
∫ 1

0

f(t, b)dt,

and in the second to
∫ 1

0

g(a, t)dt.
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Now, since ω is closed and exterior differentiation commutes with pullbacks
we have dπ∗ω = 0, which gives

(

∂g

∂x
−

∂f

∂y

)

dx ∧ dy = 0,

or
∂g

∂x
=

∂f

∂y
.

Now consider the integral over C1. We have

∂

∂y

∣

∣

∣

∣

y=b

∫ 1

0

f(t, y)dt =

∫ 1

0

∂f(t, y)

∂y

∣

∣

∣

∣

y=b

dt

=

∫ 1

0

∂g(t, b)

∂x
dt

= g(1, b) − g(0, b)

= 0,

where we used the Fundamental Theorem of Calculus and that g is periodic. A
similar results holds for the integral over C2. In both cases the result is that
the values of the integrals are independent of the choices of b and a.

Now every closed form on R
2 is exact, so there exists a function F with

dF = π∗(ω) = fdx + gdy. Hence f = Fx and g = Fy. If F is periodic is defines
a function on T 2 whose exterior derivative is ω. Now the integral over C1 can
be written

0 =

∫ 1

0

f(t, y)dt

=

∫ 1

0

∂F (t, b)

∂x
dt

= F (1, b) − F (0, b),

and from the C2 integral we have F (a, 1) = F (a, 0), and both of these are
independent of a and b. It follows that F is periodic, from which the result
follows.
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