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Dynamic feedback in an aggregation-disaggregation model

B. Urbanc,1,* L. Cruz,1 S. V. Buldyrev,1 S. Havlin,1,2 B. T. Hyman,3 and H. E. Stanley1
1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
2Gonda-Goldschmied Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

3Neurology Service, Massachusetts General Hospital, Boston, Massachusetts 02114
~Received 29 September 1998; revised manuscript received 23 March 1999!

We study an aggregation-disaggregation model which is relevant to biological processes such as the growth
of senile plaques in Alzheimer disease. In this model, during the aggregation each deposited particle has a
probability of producing a new particle in its vicinity, while during disaggregation the particles are anihilated
randomly. The model is held in a dynamic equilibrium by a feedback mechanism which changes the disag-
gregation probability in proportion to the change in the total number of particles. We also include surface
diffusion which influences the morphology of growing aggregates and colonies. A colony includes the descen-
dents of a single particle. We investigate the statistical properties of the model in two dimensions. We find that
unlike the colonies, individual aggregates are fractals with a fractal dimension ofD f51.9260.06 in the
absence of surface diffusion. We show that the surface diffusion changes the fractal dimension of aggregates:
at a small aggregation-disaggregation rate,D f is independent of the strength of the surface diffusion,D f

51.7360.03. At larger aggregation-disaggregation rates and different strengths of surface diffusion, aggre-
gates with fractal dimensions betweenD f51.73 and 1.92 form. The steady-state distribution of aggregate sizes
is shown to be power law if the aggregation-disaggregation process dominates over the surface diffusion. In the
limit of weak aggregation-disaggregation and strong surface diffusion the size distribution is log-normal.
@S1063-651X~99!01008-9#
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I. INTRODUCTION

Pattern formation and fractal growth phenomena in ph
ics have attracted much attention in recent years@1,2#. Physi-
cal pattern formation phenomena have many interes
analogies in biological systems that are usually too comp
to be described in terms of simple equations@3#. Although
biological growth involves biochemical reactions, transp
and production, the specific processes that underlie biol
cal growth and its rate are unknown. In part this is beca
the essential processes that give rise to a particular struc
of a growing aggregate cannot be examined directly. Rat
lattice models@4,5# are used to mimic the essential featur
of the observed growth patterns@6#. Accurate modeling of
the growth in turn sheds light on the possible biochemi
mechanisms that govern the phenomena, and contributes
deeper understanding of biological morphogenesis and
lution.

In this paper we study a model motivated by the grow
of senile plaques in the cortex of the brain of Alzheim
patients@7#. It is well known that Alzheimer disease is ass
ciated with senile plaques, macroscopic aggregates
amyloid-b (Ab) protein of 40-42 amino acids in length
Our approach to the modeling of plaque formation is ba
on several experimental observations. Although the pre
sor peptide Ab is produced uniformly throughout the corte
of the brain, the aggregated Ab deposits are anatomicall
discrete, roughly spherical aggregates of Ab fibrils. The
amount of Ab deposits is not correlated with the duration

*On leave from the J. Stefan Institute, Jamova 39, 1001 Ljublja
Slovenia.
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the severity of the disease@8,9#. This observation suggest
that after the onset of the disease the process of plaque
mation reaches a dynamic equilibrium. Computerized ima
analysis has shown that the size distribution of Ab senile
plaques can be well fit to a log-normal distribution@10#.
Finally, recent quantitative analysis of confocal micrograp
of senile plaques in three dimensions has revealed their
specific porous structure@11#.

In order to answer the question of what kind of mech
nisms produce such porous morphology at equilibrium,
consider general principles of aggregation. Mechanis
which are responsible for the growth should depend on
diffusion constant of Ab as compared to its aggregation rat
If the diffusion is slower than aggregation, an aggregate w
a ramified treelike structure is formed that belongs to a d
fusion limited aggregation~DLA ! universality class@12#. If
the diffusion is faster than aggregation, a compact spher
structure is formed, which belongs to the Eden universa
class@12#. These two models are limiting cases of a mo
general finite-diffusion-length model@13# that also predicts
DLA-like nonfractal structures. The DLA and Eden mode
are essentially mimicking nonequilibrium phenomena, wh
is in disagreement with dynamic equilibrium. The DL
model can be modified into an equilibrium process by int
ducing disaggregation@14#. However, the resulting aggre
gates have a smaller fractal dimension than DLA aggrega
and are thus appropriate to describe branched-polymer
figurations but not the observed porous senile plaques. T
are also cluster-cluster aggregation~CCA! models@1#, based
on DLA, that can be modified into equilibrium growth mod
els by introducing sources and sinks@15# ~steady-state CCA!
or by allowing aggregates to break~reversible CCA! @16#.
However, the morphologies of the resulting aggregates

a,
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PRE 60 2121DYNAMIC FEEDBACK IN AN AGGREGATION- . . .
highly ramified, exhibiting fractal properties. Moreove
since plaque aggregation in the brain is believed to be a s
process on a time scale of years as opposed to a much f
diffusion, the models of the DLA type are unlikely to b
directly relevant to the growth of Ab plaques.

Our approach to modeling senile plaque formation
based on the birth-death type of aggregation models tha
generally used for studying the dynamics of populations, e
demics@17#, chemical reactions with creation and anihilatio
processes@18#, and even evolution through mutations@19#.
Our model, based on aggregation and disaggregation
modified in such a way that it accounts for both a dynam
equilibrium and a specific porous structure of the obser
senile plaques@11#. The disaggregation process is natural
postulate, since recent experiments suggest that ce
agents in the brain interfere with Ab aggregation and poten
tially trigger reversal of Ab aggregate@20#.

The model is introduced in Sec. II. In order to achieve
growth at a dynamic equilibrium, we introduce a feedba
mechanism into our model. The disaggregation proces
modified at each simulation step such that it becomes st
ger if the number of particles increases, and conversel
weakened otherwise. We discuss several ways to chang
disaggregation process through feedback, and we com
two possibilities that lead to a different asymptotic behav
of the system. Under the assumption of the existence of
dynamic steady state, we then choose the feedback me
nism in which the disaggregation probability is changed
proportion to the change in the total number of particles.
Sec. III we present statistical properties of the model, a
study the fractal dimension and size distribution of agg
gates in dependence on the aggregation-disaggregation
and surface diffusion. We also examine the growth rate
the whole colony of aggregates@21#, and show that it scale
in a nonfractal way.

II. MODEL

The model is based on two processes, aggregation
disaggregation. At each simulation step the rules for agg
gation and disaggregation are applied to each particle in
lattice, thus mimicking the time evolution of particles. Th
whole growth process can thus be viewed as an example
birth-and-death branching process@22,23#. Although a par-
ticle in our terminology means an aggregate composed
many Ab molecules, it is, on the other hand, much smal
compared to a fully evolved senile plaque. One can think
a particle as a fibril of amyloidb peptides as experimentall
observedin vitro @24#. We are not modeling the microscop
biochemical processes that give rise to Ab fibrils, but we
take them as basic to our explanation of the anatomical
perimental observations of Ab deposits. In this sense ou
model is phenomenological~‘‘coarse grained’’! and not mi-
croscopic.

A. Aggregation-disaggregation process

We study the model on a two-dimensional discrete latti
Each lattice site is either empty or occupied by a particle.
each particle we first decide with equal probabilities,1

2 ,
which rule, either for aggregation or disaggregation, will
applied.
w
ter

s
re
i-

is
c
d

in

e
k
is
n-
is
the
re

r
ne
ha-

n
d
-
ate
f

nd
e-
e

f a

of
r
f

x-

.
r

~i! If a particle is chosen to aggregate at a time stept, it
has a certain aggregation probabilityPagg to create a new
particle in the next time stept11 at some empty site in its
vicinity; otherwise nothing happens. The new particle p
forms a random walk from the original particle site in th
lattice until it encounters the first vacant site, where it
attached. In this way every particle in the lattice has an eq
probability to create a new particle; thus the growth is u
form.

~ii ! If the disaggregation rule applies, the particle will b
anihilated with the disaggregation probabilityPdis at the time
stept11.

Since the rules defining the growth model are independ
of the local geometry of the growing aggregates, we c
relate the number of particlesNt11 at time t11 with the
number of particlesNt at time t:

Nt115Nt1
1
2 ~Pagg2Pdis!Nt . ~1!

The factor of1
2 comes from the fact that on average half

the particles follow the aggregation rule and the other h
the disaggregation rule. We have to emphasize that Eq.~1!
applies only on average, it is thus a ‘‘mean-field’’ equatio
The solution of the above recursion relation@Eq. ~1!# is

Nt5N0S 11
Pagg2Pdis

2 D t

.

For Pagg.Pdis the number of particles increases expone
tially, while for Pagg,Pdis it decreases exponentially. Star
ing from a given configuration of particles, the system, a
cording to Eq.~1!, reaches equilibrium ifPagg5Pdis. In the
parameter space (Pagg versusPdis), Pagg* 5Pdis is the critical
line.

We can use a theory of branching processes@22# to cal-
culate what happens to the descendents of one particle at
time steps at the critical point,Pdis5Pagg. We define a prob-
ability PN,t such that aftert steps we end up withN descen-
dents of the initial particle. We create a generating funct
gt(x),

gt~x![ (
N50

`

xNPN,t , ~2!

which is by definition normalized such thatgt(x51)51. By
taking into account three possible outcomes for each par
from the time stept to the time stept11, we can express
gt11(x) in terms ofgt(x) through the recursion relation

gt11~x!5
Pdis

2
1S 12

Pagg1Pdis

2 Dgt~x!1
Pagg

2
gt

2~x!.

~3!

For Pdis5Pagg it is possible to show@22# that the solution is

gt~x!512
2

Paggt
1

4

Pagg
2 t2 (

N51

`

expF2
2N

Paggt
GxN10S 1

t2D .

~4!

For x51, the term with the sum in the Eq.~4! represents a
probability that aftert steps there will be one or more de
scendents of the original particles. The probability that af
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2122 PRE 60B. URBANC et al.
t steps the number of descendents will be zero is equa
122/(Paggt). Thus asymptotically at larget the probability
of having zero descendents of one particle goes to 1. N
that the generating function given by Eq.~4! consists of two
parts, one corresponding toN50 and the other correspond
ing to N>1. This latter part is analytical, and, as we show
the Appendix, can be derived from the Fokker-Planck eq
tion.

Knowing the probabilitiesPN,t , we can calculate the mo
ments^N& and^N2&. As expected,̂N&51, meaning that on
average we expect that the number of descendents is 1
the other hand,̂ N2&5Paggt. This means that the standa
deviation of the distributionPN,t at large times grows asAt.

If we start with N0 original particles atPdis5Pagg, the
probability of having zero particles after larget is @1
22/(Paggt)#N0'122N0 /(Paggt). This probability is thus in-
creasing with time, although the average number of partic
remains the same, equal toN0. We therefore showed that fo
any finite system of initial particles, even at the critical po
(Pdis5Pagg), the model as defined above is unstable due
fluctuations and will eventually yield an empty lattice.

B. Dynamic feedback

The model defined in Sec. II A is unstable: regardless
the initial state and regardless of how the two probabilit
for aggregation and disaggregationPagg andPdis are chosen,
the system either dies or grows until the whole lattice is fu
covered by particles. In order to be able to describe a
namical system with both processes at equilibrium, it is n
essary to introduce a feedback mechanism that pushes
system toward equilibrium. The importance of the feedba
mechanism has been recognized in other cellular autom
models, in particular in self-organized critical models whe
feedback plays the role of a restoring force that drives
system back to the dynamical critical point@25#.

One way to introduce a feedback mechanism is to spe
the average number of particles in the steady stateNf , and to
modify Pdis at each step according to

Pdis~ t11!5Pdis~ t !1W~Nt2Nf !/V, ~5!

whereW is a feedback parameter andV is the total number of
lattice sites, so thatNf /V is the concentration of particles i
the steady state.

In order to find the approximate asymptotic behavior
the model with the feedback defined by Eq.~5!, we replace
the differenceNt112Nt in Eq. ~1! by dNt /dt, and the dif-
ferencePdis(t11)2Pdis(t) by dPdis(t)/dt, and then assume
that, ast˜`, Nt5Nf1x andPdis5Pagg1y. For smallx and
y, we can linearize Eqs.~1! and ~5! and find

x5DN cosvt, ~6!

whereDN is an amplitude that depends on the initial con
tions andv5AWNf /(2V). As we can see, the feedback d
fined by Eq.~5! yields an oscillatory behavior of the syste
which is difficult to justify in biological growth~see Fig. 1!.

We therefore adopt another type of feedback, one
changes the disaggregation probability in proportion to
change in the total number of particles,
to
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Pdis~ t11!5Pdis~ t !1w
Nt2Nt21

V
, ~7!

wherew measures the strength of the feedback.
To compare the two different types of feedback, in Fig

we plot the dependence ofNt /V on time. The feedback de
fined by Eq. ~7! drives the system smoothly into on
uniquely defined steady state without any oscillations. W
therefore consider from here on only the feedback given
Eq. ~7!, which is also simpler since it does not require t
final coverageNf /V to be specified.

We can solve the recursive equations~1! and ~7! by as-
suming thatw is small and by taking the continuum limit
First, we replace the differencePdis(t11)2Pdis(t) by
dPdis(t)/dt and the differenceNt2Nt21 by dNt /dt (dt
'Dt[1). In this way, we obtain a differential equation fo
Nt in the presence of the feedback,

dNt

dt
5aNt2bNt

2 , ~8!

FIG. 1. The fraction of occupied sitesNt /V as a function of
time t as a result of a simulation on a 2D lattice of size 2563256
with an initial fractionN0 /V50.001 of randomly placed particles
The aggregation probabilityPagg50.25, and initially there is no
disaggregation@Pdis(t50)50#. In the absence of feedback th
fraction of particles Nt /V increases exponentially with time
~opaque circles!. In the presence of the feedback (W52) defined by
Eq. ~5!, the system oscillates around a predetermined fraction
particlesNf /V ~filled squares!, while in the presence of the feed
back (w52) defined by Eq.~7! the approach to a steady state
smooth~open triangles! and well described by an approximate an
lytic solution given by Eq.~9! ~thick solid line!. The thin solid lines
are guides to the eye.
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PRE 60 2123DYNAMIC FEEDBACK IN AN AGGREGATION- . . .
with the constants 2a[Pagg2Pdis(0)1wN0 /V and 2b
[w/V. The initial value of the disaggregation probability
denoted byPdis(0) and the initial number of occupied site
by N0. Denoting the asymptotic solution~as t˜` and
dNt /dt50) by N`5a/b, the time dependence ofNt is given
by

Nt5
N`

11@~N`2N0!/N0#exp~2at!
. ~9!

If N0!N` andNt!N` , for a short time the number of par
ticles grows exponentially, as in the absence of feedback
longer times, the feedback inhibits further growth and
growth process reaches a dynamic equilibrium with the
erage number of particlesN` conserved over time. The
simulations shown in Fig. 1 are in good agreement with
~9!. As shown in Fig. 1, the approximate solution~thick solid
line! approaches the exact asymptotic value and is clos
the solution found by simulations~open triangles! at all
times.

As for the average number of particlesNt as t˜`, there
is no difference between the model in the absence of
feedback atPdis5Pagg and the model with the feedback d
fined by Eq.~7!. However, there is an essential differen
regarding the fluctuations of the number of particles arou
its ‘‘mean-field’’ asymptotic value,N` , as presented in the
Appendix. While without feedback the standard deviation
the probability distribution of the number of particles i
creases with time, in the presence of the feedback define
Eq. ~7! the distribution of the number of particles around t
mean valueN` can be approximated by a Gaussian distrib
tion with a time-independent width. Moreover, the width c
be varied by changing the feedback parameterw.

C. Surface diffusion

For a typical biological tissue there is always ‘‘surfa
tension’’ which suppresses random spatial fluctuations al
the edges of the aggregate@4#. Algorithms for boundary
smoothing are well known also in the field of the surfa
growth as noise-reduction methods@26#.

We implement the surface diffusion in the following wa
After each step of aggregation and disaggregation~one step
in our terminology means that every particle in the lattice
exposed to the rules of the model!, each particle has a prob
ability of moving one step in a randomly chosen direction
and only if after the move the particle ends up with mo
nearest neighbors. In this way particles that are totally s
rounded by other particles do not move, whereas the isol
particles tend to ‘‘find a better environment,’’ i.e., an env
ronment with more occupied nearest neighbors. The stre
of the surface diffusionJ can be varied by the number o
times that all the occupied sites in the lattice make suc
step.

The influence of the surface diffusion on the morpholo
of a growing colony of aggregates is presented in Figs. 2~a!
~no surface diffusion! and 2~b! ~with surface diffusion,J
520).
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III. STATISTICAL PROPERTIES OF THE MODEL

There is an inherent difference between aggregation
disaggregation processes, even though the two processe
at equilibrium due to the feedback. There is an overall lar
probability for larger aggregates to grow in time or, co
versely, a smaller probability for isolated particles to survi
too far away from a larger aggregate. This causes cluste
of aggregates into larger formations which are dynamica
stable as simulation timet˜` @27#. Thus, no matter wha
the initial configuration is, either randomly distributed pa
ticles or a solid disk of particles, the system always evolv
into a dynamical steady state which is one clustered colo
composed of many connected objects, aggregates, as s
in Figs. 2~a! and 2~b!.

We want to examine statistical properties of the mod
such as the fractal dimension of aggregates and colonies
rate of colony growth and the size distribution of aggrega
within a colony. The theory of branching processes is app
priate to predict a ‘‘mean-field’’ behavior of the aggregatio
disaggregation behavior, but it is not able to account for a

FIG. 2. Two-dimensional~2D! lattice of size 5123512. The
initial configuration consists of randomly placed particles that co
roughly 10% of the total lattice area@N0 /V50.01, Pagg50.10, and
Pdis(t50)50.10, andw52]. ~a! A typical colony after 140 000
time steps in the absence of the surface diffusion.~b! A typical
colony after 140 000 time steps in the presence of the surface
fusion with a strengthJ520 ~the diffusion process dominates ove
the aggregation-disaggregation process!.
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geometrical properties of growing aggregates, neither m
phology, nor the rate of growth, nor their size distribution

A. Morphology of colonies and aggregates

Figure 2 shows individual colonies grown in the mod
One colony is grown in the absence of the surface diffus
and the other in the presence of the surface diffusion. We
see that the surface diffusion changes the morphology of
colonies and aggregates by smoothing the surfaces of c
ters.

The time development of the radius of gyration^R2&1/2 is
plotted in Fig. 3~a! for short times, i.e., before the colon
reaches the steady-state size. From the graph@solid and
dashed lines in Fig. 3~a!# we can extract the exponent of th
growth of the radiuŝ R2&1/2: ^R2&1/2 grows astn, wheren
50.5060.05, corresponding to a normal diffusion rate. T
results show that the presence of the surface diffusion ha
influence on the exponentn. The scaling of the number o
particles N in a colony with the radius of gyrationRg is
presented in an inset of the Fig. 3~a!. The scaling is close to

FIG. 3. ~a! The effect of surface diffusion on the time depe
dence of the colony growth: the radius of gyration^R2&1/2 of a
colony. The initial configuration is a solid disk with a radiusR
550 pixels on a 2D lattice of size 204832048 @Pagg5Pdis(t50)
50.90, andw52]. The dotted lines have slopes of 0.5060.05. The
curves are averaged over ten runs. The inset of the figure show
scaling of the number of particlesN within a colony with its radius
of gyrationRg . ~b! The effect of the surface diffusion on the fract
dimensionD f of aggregates~connected clusters that form a colon!
in dependence on the simulation time. The solid line is a linear fi
D f(t) in the absence of diffusion (J50), while the dashed line is a
linear fit to D f(t) for J51, 10, and 100@the lattice size is 512
3512, Pagg5Pdis(t50)50.10, andw52].
r-

:
n
an
e
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no

N;Rg
2 , meaning that the whole colony scales as a nonfra

two-dimensional object.
On the other hand, the geometrically connected obje

~aggregates! that form a colony have fractal properties. Th
radius of gyration of an aggregate,r g , scales with the size o
the aggregateS (S is equal to the number of particles th
form the aggregate! as r g}S1/D f , whereD f is a fractal di-
mension. In the absence of the surface diffusion (J50),
D f51.9260.06, independent of the aggregatio
disaggregation rate. As shown in Fig. 3~b!, at a small
aggregation-disaggregation rate (Pagg5^Pdis&50.10), D f
51.7360.02 for the model with surface diffusion, indepe
dently of the strength of the surface diffusionJ. For a large
aggregation-disaggregation rate (Pagg5^Pdis&50.90), D f
depends on the strength of the surface diffusionJ; at J51,
we find D f51.8860.05, and atJ5100 our results yield
D f51.8160.05. Thus by an appropriate choice of th
aggregation-disaggregation rate and the strength of the
face diffusion, the aggregates in our model can have
fractal dimension betweenD f51.73 and 1.92.

B. Distribution of aggregate sizes

Figures 4~a! and 4~b! show the steady-state size distrib
tions of aggregates for various surface diffusion strengthJ
and for two different aggregation-disaggregation probab
ties; ~a! corresponds to low and~b! to high probabilities.
There are two limiting cases. At low aggregatio
disaggregation probabilities and high surface diffusion@Fig.
4~a!#, the distribution can be well approximated by a lo
normal form. At high aggregation-disaggregation probab
ties and in the absence of surface diffusion, the size distr
tion suggests a power-law behavior with the expon
'21.7960.05. As one can notice, the effect of the surfa
diffusion on the power-law behavior of the distribution is n
significant in this limiting case. However, at small aggreg
sizes the power-law distribution is somewhat flattened o
meaning that there are fewer small aggregates in the sys

In percolation @28# the size distribution of percolating
clusters is a power-law distribution, as well as in our limitin
case of high aggregation-disaggregation probabilities and
surface diffusion. We define the size distribution exponent,

D~S!;S2t. ~10!

According to the theory@1#, there is a relationship betwee
the fractal dimensionD f andt,

t511
d

D f
, ~11!

whered is the lattice dimension, in our cased52. The pre-
diction for t from the scaling relation given by Eq.~10! is
thus t52.04 ~here we take into account our result for th
fractal dimensionD f51.92). This value is, however, slightl
different from the one from our simulation,t51.79. This
can be due to finite size effects: It is known that the simu
tions consistently yield a too small value fort ~very close to
t51.79) unless the lattice size is very large~linear size close
to 100 000!, in which case the theoretical value fort52.04
@28# can be achieved.
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IV. CONCLUSION

In contrast to models that account for the growth far fro
equilibrium @2#, in this paper we study a two-dimension
aggregation-disaggregation model held at equilibrium b
dynamic feedback mechanism. We show that by an ap
priate choice of the feedback the fluctuations of the num
of particles in the steady state are finite and can be m
smaller by increasing the feedback parameterw.

Our model of biological growth@4# also takes into ac-
count the surface diffusion. We find that the radius of gy
tion of a growing colony increases with time as^R2&1/2}At,
which is reminiscent of a normal diffusion process. We sh
that although colonies are nonfractal objects, the conne
objects, i.e., aggregates, that form the colony are frac
with the fractal dimensionD f51.92~very close to the fracta
dimension of percolation clusters@5#! in the absence of the
surface diffusion. Our results show that the presence of
face diffusion enhances the fractal properties of aggreg
by creating branches and pores, thus decreasing the fr
dimension down toD f51.73 at a small aggregation
disaggregation rate. Although the value ofD f in this case is
very close to the fractal dimension of DLA clusters@1,2#, the
structure of a typical aggregate as seen in Fig. 2~b! is very

FIG. 4. Size distributionD(S) of clusters for various amounts o
the surface diffusionJ. The initial configuration is randomly place
particles that cover 10% of a lattice of size 204832048. The size
distributions are averaged over ten runs, and logarithmically binn
Both graphs are depicted on a double logarithmic scale.~a! The
aggregation-disaggregation probabilities are small,Pagg5Pdis(t
50)50.10 (w52). The solid line that fitsSD(S) for J520 is a fit
to a log-normal form.~b! The aggregation-disaggregation probab
ties are large,Pagg5Pdis(t50)50.90 (w52). The solid line that
fits SD(S) in the absence of the surface diffusion,J50, is a fit to a
power law with a slope20.7960.05.
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different from that of DLA. Quantitative analysis of the dis
tribution of aggregate sizes shows that, depending on par
eters of the model, the steady-state size distribution of ag
gates changes from a power-law distribution~high
aggregation-disaggregation probabilities and no surface
fusion! to a log-normal distribution~the surface diffusion
dominates over the aggregation-disaggregation process!.
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APPENDIX: PROBABILITY DISTRIBUTION
OF THE NUMBER OF PARTICLES

Here we derive the steady-state probability distribution
the number of particles in the presence of the feedback
fined by Eq.~7!. As opposed to an average~‘‘mean-field’’!
number of particles at a time stept, Nt , we consider a new
statistical variable for the number of particles at the timet,
N(t), a continuous function oft, which is allowed to fluctu-
ate from its mean-field valueNt .

We consider the system at the critical point,Pdis5Pagg.
Every particle in the system has a probabilityPagg/2 of cre-
ating a new particle, the same probability of being anni
lated, and the probability 12Pagg of remaining unchanged
Thus for each particlei in the system at every time step the
are three possible outcomes that affect the total numbe
particlesN(t):

DNi5H 11 with probabilityPagg/2

21 with probabilityPagg/2

0 with probability 12Pagg.

~A1!

The square of the width of the distribution ofDNi , given
by Eq. ~A1!, s i

2 , is then equal tos i
25Pagg. For the total

number of particlesN the square of the width of the distri
bution s2 is thens25PaggN ~sinceDN5( i 51

N DNi).
Starting from the mean-field equation given by Eq.~8!,

we can write a master equation forN(t),

dN
dt

5aN2bN 21hs, ~A2!

whereh is a random variable which is distributed accordi
to Gaussian distributionsP(h)51/A2p exp(h2/2) and s
5APaggN.

The Fokker-Planck equation for the probability distrib
tion of the number of particles,P(N,t), which corresponds
to Eq. ~A2!, is then

]P

]t
5

1

2

]2

]N 2
@s2P#2

]

]N @P~aN2bN 2!#. ~A3!

We only focus on a steady-state solution (]P/]t[0) of
Eq. ~A3! around the mean valuêN&5N`5a/b. By defining
a new variablex[N2N`5N2a/b and by approximating
s2 by its mean-field values2'PaggN` , Eq.~A3! transforms
into

d.
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d2P

dx2
1gx

dP

dx
1gP50, ~A4!

whereg52b/Pagg. The solution of Eq.~A4! is

P~N!5A expF2
~N2N`!2

Pagg/b
G , ~A5!

whereA can be determined by normalization. Under the a
proximations made, the distribution given by Eq.~A5! is
Gaussian with the standard deviationsP ,
-

.

, a
gr
el
ap

rt,

y

B

-

.
c

y-
-

sP[APaggV

w
, ~A6!

where we took into account thatb5w/2V. This result shows
that the stronger the feedback parameterw, the smaller will
be the fluctuations of the number of particlesN around the
average mean-field valueN` .

On the other hand, in the absence of the feedback,a5b
50, the Fokker-Planck equation given by Eq.~A3! does not
have a stable steady-state solution. However, by solving
time-dependent Fokker-Planck equation, we obtain the re
which is consistent with the one given by the generat
function in Eq.~4!, except for the diverging part correspon
ing to N50 that cannot be covered by such a continuo
differential approach.
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