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Order parameter and segregated phases in a sandpile model with two particle sizes
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1Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
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We study the behavior of two one-dimensional sandpile models with two different particle sizes in depen-
dence on the size dispersion and on the difference in the surface creep between the two types of particles. We
investigate the phase space and find several types of particle segregation that occur: two oppositely totally
segregated states, a striped state, and two oppositely partially segregated states. By defining an order parameter
for the size segregation we investigate the effect of the size dispersion and of the creep difference between the
two types of particles. At very small size dispersions the creep difference induces the size segregation; if the
sign of the creep difference is reversed, the size segregation in the sandpile is reversed too and the order
parameter changes its sign. In one of our models, in the absence of the creep difference the order parameter
grows continuously with the size dispersion from zero to its maximal value, a behavior that is reminiscent of
the behavior of the order parameter in the vicinity of a continuous phase transition in the absence of external
fields. @S1063-651X~97!07108-0#

PACS number~s!: 64.60.Lx
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I. INTRODUCTION

Recently, much work has been done on trying to und
stand the unusual properties of granular matter@1#. In par-
ticular, a size segregation of a large number of granular p
ticles of different sizes under external vibrations has b
investigated @2#. A similar phenomenon occurs in san
ripples or dunes where heavy grains accumulate on the c
and light grains on the trough of a ripple@3#. Recently, a
different phenomenon, a self-stratification on top of the s
segregation, has been observed in the absence of any ex
perturbation@4#.

There are several theoretical approaches that are use
study the phenomena described above. In 1987 Baket al. @5#
introduced a cellular automaton model as a paradigm of
concept of self-organized criticality~SOC! @6,7#. Regardless
of an initial configuration, the SOC system ‘‘self-organize
into a critical state with power-law distributions of avalanc
amplitudes, provided that certain conditions, such as s
external driving@8#, are met. However, most experiments
granular materials disagree with power-law predictions; s
e.g., Ref.@9# and references therein. Rather, the sandpile
havior is reminiscent of the properties of an equilibrium s
tem close to a first-order phase transition with hystere
@10#. Along these lines a continuum description of the d
namics of sandpile surfaces has been developed that t
into account two populations of grains, immobile and rolli
@11#, and as such yields better agreement with experime
findings.

In order to explain the self-stratification phenomenon@4#,
the continuum description has been extended to a pai
species@12#. Further studies have shown that the key requ
ment for self-stratification in granular mixtures is a diffe
ence in the repose angles of the two pure species, whe
for a size segregation of the species to take place the
dispersion is needed@13#. In this specific problem of explain
ing the self-stratification, the cellular automata mod
proved to predict the behavior very well. Also, in anoth
561063-651X/97/56~2!/1571~9!/$10.00
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case of the segregation in sand ripples under the exte
wind a cellular automaton model has been successfully
plied recently@14# and the difference in creep dynamics b
tween the two types of particles has been shown to be cru
to explain the particle size segregation.

Although most of the sandpile models do not quite mim
a real pile of sand, they may shed light on different aspe
of the behavior of the granular matter. Here we investig
two critical-slope sandpile models that differ from the ‘‘cla
sical’’ sandpile models by two properties:~i! the size disper-
sion ~two different sizes of particles! and ~ii ! the difference
in the creep dynamics between the two particle species
order to study systematically different types of particle se
regation during the evolution of the pile. Our aim is not
explain the mechanisms of size segregation or s
stratification, but rather to explore the phase space define
two parameters:~i! size dispersion and~ii ! difference in
creep dynamics. In order to classify different sandpile co
figurations we define an order parameter that differentia
between random and phase-separated~size-segregated! con-
figurations.

We consider two different sandpile models in the limit
slow driving rather than having a constant flux of incomi
particles. The two models under consideration differ in t
definition in the local slope. In the first model,A, the local
slope depends on the size of the rolling particle, wherea
the second model,B, the size of the rolling particle does no
affect the local slope. In the limit of a very small size di
persion both models coincide.

In Sec. II a brief description of the models under cons
eration is given. A comparison with other existing models
made. In Sec. III the order parameter is defined and its
portance stated. In Sec. IV we present the results of b
models. In addition to the expected size segregation in
sandpile~large particles on the bottom and small on the to!
we find the opposite segregation~small particles on the bot
tom and large particles on the top!. Although we are not able
to change the difference in the repose angles of pure spe
1571 © 1997 The American Physical Society
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FIG. 1. Schematic diagrams for the two mo
els considered. The reflecting and absorbi
walls are at the left and right of the pile, respe
tively. In both casesA andB the shaded particle
is the rolling particle at the active site. Note th
in modelB the criterion for toppling is indepen
dent of the size of the rolling particle.
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the difference in the two repose angles arises, however, f
certain range of parameters due to the finite size of parti
and thus we also find a self-stratified, i.e., striped configu
tion, such as observed and theoretically explained@4,12,13#.
In addition to the three configurations described above
find within both models two partially segregated configu
tions that exist only at small size dispersions. We pay att
tion specifically to the behavior of the order parameter in t
limiting cases. First, at zero creep difference within mo
B the order parameter is zero for all values of the size d
persion, whereas in modelA the order parameter increas
continuously from zero with size dispersion. Second, in
limit of a very small size dispersion both models coinci
and the corresponding order parameter shows a discont
ous behavior as the sign of the creep difference between
two particle species is changed. The conclusions are dr
in Sec. V.

II. MODELS

The models considered in this article are simplified v
sions of the local-limited ~LL ! model introduced by
Kadanoff et al. @15#. The models presented are on
dimensional critical-slope sandpile models with one refle
ing and one absorbing wall. The starting condition for t
simulation is an empty lattice in which particles are added
the first site, adjacent to the reflecting wall. Because the
dition of a particle is followed by a relaxation of the syste
the pile builds up with the site heights decreasing from
reflecting to the absorbing wall. Similarly to other critica
slope models, the relaxation step takes place only on ac
sites, defined as a sitei with local slopehi2hi 11 that ex-
ceeds a critical valuesc . An active site relaxes so that th
topmost particle ‘‘topples’’ from sitei to sitei 11. This top-
pling may yield the neighboring site to be active in the ne
step causing the relaxation rule to be repeated until all
local slopes are smaller or equal tosc . The iterative relaxing
process readily produces slides, or avalanches, to occu
the system. In our case this relaxation means that the ad
particle rolls downhill until it reaches a stable site. As in t
Bak-Tang-Wiesenfeld~BTW! model@5#, particles are added
to the system~in our case to site 1! only when all the sites are
found to be stable and no more topplings occur. Under
condition, the system is said to be driven very slowly b
cause the response of the system is much faster than
external perturbation@16#. Typical results from the BTW
simulations result in power-law scaling of quantities such
a
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the distribution function of avalanche sizes@5#. Under certain
conditions the distribution functions in one-dimension
sandpile models have been found to scale in a multifra
way @15#.

Four differences between the LL model and the mod
presented here are that~i! our models topple at most on
particle from an active site,~ii ! particles are added exclu
sively to the first site at the reflecting wall,~iii ! the added
particles are a random mixture of two species, i.e., two siz
and ~iv! the critical slope depends on the type of the rolli
particle and the particle below it, i.e., the critical slope is
local variable. Differences~i! and ~ii ! are actually simplifi-
cations of the LL model, which in the case of only one ty
of particle yield a trivial and thus uninteresting behavior. A
for ~iii !, we choose two different heights of particle
whereas their widths are the same. Other possibilities
achieving~iii ! not considered in this paper are to choose t
different species that are of equal sizes but differ by so
other quantity, either by the mass@14# or by the angles of
repose of pure species. By~iv! we introduce into our models
different creep dynamics for different combinations of t
rolling particle and the particle below it. This differenc
comes from a difference in friction~which in real sandpiles
could come from different shapes of grains! between differ-
ent particles and is an intrinsic property that distinguish
granular matter from a fluid.

The pile is initially built by choosing at random one of th
two types of particles to be added to an empty lattice. F
convenience, we choose to have equal ‘‘volumes’’ in the p
at any given moment of the simulation for each of the tw
size populations. This means that if, for example, we ha
sizess151 ands252, then particles withs1 will be chosen
with 67% probability while particles withs2 will be chosen
with 33% probability. This condition is introduced so th
spatial ordering can be easily identified visually.

We consider two different relaxation rules that define t
two modelsA and B. In modelA, a site i becomes active
when a new particle is added to it at timet and the local
slope defined between this sitei and sitei 11 is bigger than
sc ~see Fig. 1!. If site i is active, the following relaxing rule
applies:

H~ i ,t11!5H~ i ,t !2s,

H~ i 11,t11!5H~ i 11,t !1s, ~1!
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56 1573ORDER PARAMETER AND SEGREGATED PHASES INA . . .
provided thatH( i ,t)2H( i 11,t).sc @see Fig. 2~a!#. Here
s is the height of the rolling particle andH( i ,t) is the total
height at sitei at time stept. In model B, a site becomes
active only when the relative height of its site minus the s
of the rolling particleH( i ,t)2s and the height of the nex
site H( i 11,t) exceedssc @see Fig. 1~b!#. As a consequence
of this rule, in modelB the condition for a site to be active i
independent of the size of the rolling particle.

Rule ~i! is similar to that of the LL model, but the pres
ence of the size dispersion in the system introduces an a
tional noise that may affect the configuration of the syste
This additional noise is not present in the BTW and L
models because the particles are of the same size and
they are ‘‘buried’’ inside the pile they cannot affect any
the dynamics that happen on the surface where the s
occurs. In the presence of the size dispersion, since the
height at a given site is made of a sequence of buried
ticles of different individual sizes, the order in which pa
ticles arrive and the amount of each type will affect the d
namics as well as the landscape of the surface. There i
implicit dependence of the behavior of the system on
way that the pile is built, or a history dependence.

Surface creep difference is introduced in each of the
models by modifying the value ofsc according to the type o
a rolling particle and the particle below. In particular, w
choose the equation

sc5s0F11g
sT2sB

smax
G , ~2!

wheresT andsB are the sizes of the rolling particle~on top!
and the particle below, respectively.s0 is the critical slope
of the rolling particle on the top of the particle of the sam
size (sT5sB), smax is the value of the size of the large
particle in the system, andg is an adjustable parameter th
affects the strength of the creep difference. The functio
form of Eq. ~2! allows for the modification tosc when the

FIG. 2. Schematic diagrams for the ordered phases exhibite
the size segregation. The lineSL indicates the boundary betwee
the two different particles with the small, phase I (h51), and
large, phase II (h521), particles on the top.
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rolling particle and the particle below it are different. In pa
ticular, the above equation differentiates between the
situations: One is achieved when a small rolling particle
on the top of a large one and the other is the reverse. In f
it has been pointed out that large grains may roll more ea
on top of small grains than small grains roll on top of lar
grains @13#. This situation is realized in our models fo
g,0. If the rolling particle is of the same type as the o
below it, then sc5s0 . This means that if the pile wa
formed by a single species, no matter which of the two typ
of particles we would take, the final repose angle would
the same. This is of course a simplification. However, in
general case where the sizes of the particles is not commen
surate with the critical slopes0 , the angle of repose within
modelA will be ns, wheren is the largest integer such tha
ns,s0 and (n11)s.s0 . Within modelB under the same
conditions, the angle of repose is equal to (n11)s ~since the
size of the rolling particle does not enter the rules in mo
B!. This means that by an appropriate choice of the two si
and the slope parameters0 we can achieve a difference i
the repose angles of the two types of particles.

III. SIZE SEGREGATION AND ORDER PARAMETER

Because the sandpile models under consideration
composed of particles of two different sizes, the outcome
a simulation exhibits different phenomena related to this
ternative degree of freedom. In order to charaterize a
quantify different realizations, we define an order parame
that takes into account the spatial distribution of the partic
in the pile.

Under certain choices of parameters, both of the two m
els exhibit one of two ordered phases in which the partic
segregate according to sizes~see Fig. 2!. The boundary of the
segregated system can be approximated by a diagonal
SL that cuts the pile into two regions. The two order
phases are distinguished from each other; in phase I
small particles accumulate on the top of the pile and in ph
II the big particles are on the top. We introduce an ord
parameterh as defined in the order-disorder transition
AB-type alloys@17#. We choose phase I to be the order
state with the maximal order parameterh51. Our order pa-
rameter then measures the fraction of particles corre
placed relative to the phase I. To be more specific, we de
two sublatticesa andb. One covers the positions of particle
above the diagonal lineSL, the other one the positions belo
that line, respectively. In the completely ordered phase I,
sublatticea accommodates small and the sublatticeb large
particles. The order parameterh is then defined by

N

4
~11h!5Na

A , ~3!

N

4
~12h!5Nb

A ,

by
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1574 56BRIGITA URBANC AND LUIS CRUZ
FIG. 3. Configurations ob-
tained within modelA at several
relative creep differencesDs/s0

51(1), 0.5(2), 0(3), 20.5(4),
21~5! and at several dispersion
smax2150.001 ~a!, 0.02 ~b!, 0.37
~c!, 1.06 ~d!, and 3.12~e!. The
system size is L550 and
s058.28. The values ofsmax21
are chosen in such a way that th
angle of repose of small particle
sSS is smaller than the angle o
repose of large particlessLL .
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B ,

N

4
~11h!5Nb

B ,

whereNy
X is the number ofX particles in they sublattice.

From the above definition we chooseh51 for phase I and
therefore obtainh521 for phase II~all particles are oppo-
site to the ordering in phase I!. Defined in this way, the rang
of values ofh is from 21 to 1. In a disordered phase th
order parameter vanishes since there are many wrongly
sitioned small and large particles in each respective sub
tice.

IV. RESULTS

In all our simulations we set the size of the small partic
to 1 and vary the size of the large particlessmax. The size
dispersion is then defined assmax21. The other relevant pa
rameter in our study is the relative creep differen
Ds/s0 , whereDs5g(smax21)/smax. The critical slope for a
small particle on the top of a large one is th
sSL5s02Ds and the critical slope for a large particle o
the top of a small one issLS5s01Ds. In this section we
study the configurations and order parameter in depend
on the above two relevant parameters.

A. Model A

Figure 3 shows typical configurations of the sandpile
several surface creep differencesDs/s0 and several size dis
persionssmax21. The dark and light colors correspond
large and small particles, respectively.

As might be expected, atDs/s050 and smallsmax21 the
arrangement of the particles is random, as a consequen
the random sequence of particle drops. As a function of
creasingsmax ~for all Ds/s0!, the system tends to assemb
with large particles at the bottom of the pile. This tenden
can be particularly observed for allsmax at Ds/s050. It is a
result of large particles satisfying the criterion to roll eas
o-
t-

s

ce

t

of
-

y

to the bottom of the pile assmax increases.
The creep difference has an effect of switching the seg

gation of large and small particles that can be noticed p
ticularly at the smallest dispersionsmax2150.001. At this
small dispersion, even small positive and negative value
Ds/s0 can cause the opposite segregation of large and s
particles. Namely, at positive values of the relative cre
difference, large particles tend to be on top of small partic
This occurs due to the reduced critical slo
sSL5s02uDsu for small on top of large particles as com
pared to large on top of small particlessLS5s01uDsu. This
means that small particles slide easily over large partic
On the other hand, negative creep differences correspon
smaller critical slopes for large on top of small particl
sLS,sSL , meaning that large particles slide easily ov
small particles. For negative creep difference there is o
one phase because the negative creep difference adds
the overall tendency of large particles to pile at the bottom
the sandpile.

At positive creep differences and large dispersio
smax21@1 a competition effect is more apparent. The co
petition is between the tendency of small particles to r
easily and the large particles to have a high friction ov
small and the tendency of large particles to violate the cr
cal condition for rolling easier than small particles. As o
can notice in Fig. 3, the corresponding configurations v
from almost random~e.g.,smax54.12 andDs/s050.5! to a
more ordered, almost stripelike configuration~e.g.,
smax52.06 andDs/s051.0!.

Figures 4~a! and 4~b! show the order parameterh as de-
fined in Eq.~3!, as a function of the size dispersionsmax21
and the relative creepDs/s0 , respectively. There are two
interesting limiting cases that are worth considering:~i! the
zero relative creep differenceDs/s050 and~ii ! the limit of
small size dispersionsmax21!1.

In case~i!, Fig. 4~a!, filled diamonds, the order paramet
h can be studied in dependence on the size disper
smax21. As presented in Fig. 4~a!, the order parameter van
ishes at zero dispersion. An interesting dependence ofh on
smax21 at zero creep difference is shown in Fig. 4~c!, where
h is presented together with a fith(Ds)5h0arctan(aDs),
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FIG. 4. ~a! Order parameterh in dependence on the size dispe
sion smax21 at several fixed values of the relative creep differen
Ds/s0521,20.5,0,0.5,1 and~b! h in dependence on the relativ
creep differenceDs/s0 at several fixed values of the size dispe
sion smax2150.001,0.05,0.55,3.5,7.2 within modelA. ~c! The or-
der parameterh at a zero creep difference in dependence
smax21 behaves ash0arctan@a(smax21)# ~solid line! with a52.73
andh050.89. Each individual point in the three graphs is a res
of averaging over 100 different configurations. The size of the s
tem isL550 ands058.28.
where Ds5smax21. We find a52.73 andh050.89. We
confirmed that the value ofh0 depends on the system siz
i.e., the larger the system, the closerh0 will be to the maxi-
mal value of 1. This behavior is reminiscent of the behav
of the order parameter in the vicinity of the continuous pha
transition, i.e., the order parameter goes to zero continuo
with the exponentb51 @found by expanding arctan(x) at
small x#. The dispersion parametersmax21 can be consid-
ered as the difference in concentration between the two ty
of particles. Because the two partial volumes of the t
types of particles are kept equal, the relative number of la
particles NL versus the number of small particlesNS de-
creases as the size dispersion increasesNL /NS5smax

21 . The
difference in relative concentrations may be defined
(NS2NL)/(NS1NL)5(smax21)/(smax11).

In case~ii !, Fig. 4~b!, filled circles, we consider the orde
parameterh in dependence on the relative creep differen
Ds/s0 . In analogy to phase transitions, we can associate
creep difference with the role of an external ordering fie
which by inverting the sign inverts the sign of the ord
parameter. As shown in Fig. 4~b!, there are two sharp jump
in the order parameter aroundDs/s050. We conclude that
the relative creep difference~external field! induces a discon-
tinuous transformation from a disordered (h50) to an or-
dered (hÞ0) configuration at small size dispersions. A
larger size dispersions the transformation becomes cont
ous and the system goes through a continuum of config
tions, from a disordered to one of the two possible seg
gated states.

B. Model B

In model B, the overall tendency of large particles
assemble at the bottom of the sandpile is absent becaus
dynamical rules do not take into account the size of the r
ing particle when changing the local slope. This means t
there is no mechanism to induce size segregation in the
sence of the creep difference, as is the case in modelA. This
is particularly apparent in Fig. 5 (Ds/s050) and Fig. 6~a!,
where as a function ofsmax the system remains in a diso
dered state, in contrast to Fig. 3 at the same parameters

On the other hand, the creep difference preserves the
ity to induce size segregation. As in modelA for
smax21!1, negative creep differences allow large partic
to slide easily on the top of small particles, so that lar
particles tend to go to the bottom of the pile (h.0), while
positive creep differences cause large particles to experie
a large friction for rolling over small ones, so that larg
particles tend to remain at the top of the pile (h,0). At
largersmax and positiveDs/s0 , the part of the pile occupied
by the large particles becomes ‘‘infected’’ by small particle
A striped configuration is seen at largesmax and negative
Ds/s0 .

Figures 6~a! and 6~b! show the behavior of the order pa
rameterh in dependence of the size dispersionsmax21 at a
few fixed values of the relative creep differenceDs/s0 , and
h in dependence on the relative creep differenceDs/s0 at
several fixed values of the size dispersionsmax21, respec-
tively.

The limiting case ofh versusDs/s0 for small size dis-
persions has the same behavior as in modelA, case~ii ! @see
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FIG. 5. Configurations ob-
tained within modelB at several
relative creep differencesDs/s0

51(1), 0.5(2), 0(3), 20.5(4),
21~5! and at several dispersion
smax2150.001 ~a!, 0.15 ~b!, 1.55
~c!, 2.6 ~d!, and 3.55~e!. The sys-
tem size isL550 ands058.28.
The values ofsmax21 are chosen
in such a way that the angle o
repose of small particlessSS is
smaller than the angle of repose o
large particlessLL .
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Fig. 6~b!#. At smax21!1, there is a jump in the order param
eterh at the point whereDs/s0 changes sign, meaning tha
the external field induces a transition into the two orde
states (h561). The fact that in modelB the random con-
figuration (h50) occurs atDs/s050 for all size disper-
sions ‘‘pins’’ the curves in Fig. 6~b! to go through the same
point h(Ds/s050)50, whereas in Fig. 4~b! the curves
cross theh50 line at differentDs/s0 , if at all.

C. Striped configuration

In addition to the two totally segregated configuratio
that always appear at small dispersions in both models
opposite signs of the surface creep difference, there is
other interesting configuration that is found. This configu
tion is the striped configuration, created by layer segrega
~self-stratification! composed of a layer of small followed b
a layer of large particles. This configuration has been
served in a sandpile experiment@4# and has been studie
theoretically @12,13#. It has been shown that two require
ments have to be fulfilled in order for self-stratification
occur: sSS,sLL ~the repose angle of small particles
smaller that the repose angle of large particles! and
sLS,sSL ~large grains roll more easily on the top of sma
grains than small grains roll on the top of large grains!.

In Figs. 3 and 5 we have chosen such values ofsmax that
the first requirementsSS,sLL is met, whereas the secon
requirement is met for negative values of the creep diff
ence. Although within modelA the striped configuration is
not very pronounced, a slight tendency towards such an
dering can be observed at positive creep differences, w
the tendency of large particles to assemble at the bottom
the pile competes with the tendency of the external field
push the small particles to the bottom. This stripy configu
tion is accompanied by the opposite size segregation~small
particles at the bottom and large at the top of the pile! as
opposed to the original observation@4#. In modelB, on the
other hand, we find the striped configuration accompanied
size segregation~as found in original work@4#! at negative
creep differences, which promote large particles to assem
d
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le

at the bottom, under the same conditions that were rece
established@13#.

By observing the formation of the striped configuration
our simulation, we detect a kink that grows from the botto
to the top of the pile and creates a double layer of sm
particles below and large particles above. The kink is form
by a wall started by a large particle at the bottom of the p
This wall acts as a barrier that particles cannot cross. S
large particles slide easily on top of small ones, they
stopped only by this barrier at the bottom. The formation
a double layer ends when the wall moves to the top of
pile. Stripes, observed in modelB, are thus formed in double
layers, as seen in experiment as well as modeled and tre
theoretically@4,13#.

D. Order parameter at small size dispersions

Here we consider the behavior of the order parameterh in
dependence on the slope parameters0 , i.e., the critical slope
of a particle on the top of another particle of the same ty
We are interested in the region of very small size dispersi
smax21!1 where both models display similar behavior.
both models at a small dispersionsmax2150.001 the order
parameterh shows a discontinuous behavior. For examp
in Figs. 4~b! and 6~b!, at negative creep differences the ord
parameter is close to the maximal value 1, whereas at p
tive creep differences it is close to its minimal value21.

There is a plateau in order parameterh at small creep
differences aroundh50. In other words, at very small dis
persions there is only a discrete set of possible configurat
that differ by the value of the order parameter. The pile m
be totally segregated~with eitherh close to 1 orh close to
21! or totally disordered withh50. However, the exac
number of possible configurations still depends on the sl
parameters0 . Figure 7 shows different plateaus for differe
s0 at a fixed size dispersionsmax51.001. At s051.1, for
example, there are three plateaus: The two outer ones c
spond toh'21 and h'1 and the middle plateau corre
sponds toh50. At certain values ofs0 , for example,
s052.8, there are additional two plateaus, i.e., configu
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tions with h560.3360.01, between the totally disordere
state withh50 and the two outer totally segregated stat
They correspond to partially segregated configurations.
absolute value of the inner limits of the two outer plateaus
integer valuess0 decrease withs0 ; we find the decrease t
be a power law with the power20.97.

Next, we study all possible configurations within the d
gram Ds/s0 versussmax21. The results for modelA are
presented in Fig. 8~a! and for modelB in Fig. 9~a!. The slope
parameters0 is chosen such that there are five different p
sible configurations at small dispersionssmax21!1. The cor-
responding configurations are plotted in Fig. 8~b! for model
A and Fig. 9~b! for modelB. The partially segregated con
figurations consist of small~large! particles on the bottom
and a random mixture of small and large particles on the
Only at very small size dispersions are the transformati
between different configurations discontinuous. At larg
dispersions the transformations between configurations
come smooth and continuous and all the plateaus disapp

FIG. 6. ~a! Order parameterh in dependence on the size dispe
sion smax21 at several fixed values of the relative creep differen
Ds/s0521,20.5,0,0.5,1 and~b! h in dependence on the relativ
creep differenceDs/s0 at several fixed values of the size dispe
sionsmax2150.001,0.05,0.55,3.5,7.2 within modelB. Each calcu-
lated point on the graphs is a result of averaging over 100 diffe
configurations. The size of the system isL550 ands058.28.
.
e
t

-

-

p.
s
r
e-
ar.

By comparing the diagrams of both models in Figs. 8~a! and
9~a! one can notice that all the curves are symmetric aro
Ds/s050 in modelB and are slightly asymmetric at large
dispersions in modelA. This is due to the fact that the ran
dom configuration persists in modelB in the absence of the
creep difference, while it is shifted to positive creep diffe
ences in modelA.

V. CONCLUSION

In this paper we study size segregation in two critic
slope sandpile models that differ in the definition of the loc
slope. In order to describe the system, we introduce an o
parameter that is zero for a disordered system and va
from 21 to 1 as a function of external parameters of t
models. In addition to the size dispersion we introduce
surface creep difference between the two types of partic
We investigate a two-dimensional phase space defined by
two relevant parameters, i.e., the size dispersion and the
face creep difference. We find several different possible s
regated states: two totally segregated states with order
rametersh'61, a striped configuration, and two partial
segregated configurations withh'60.33 that appear only a
very small size dispersions.

We show that in one of the models~modelA! size disper-
sion induces the size segregation even in the absence o
creep difference, with an order parameter that grows cont
ously from zero to its maximal value. In both models t
surface creep difference acts as an external field. At v
small dispersions, by changing the sign of the surface cre
a discontinuous transformation from a segregated to an
positely segregated state is obtained.

In this contribution we restrict our study to different siz
of particles. This leaves untouched several questions. On
them is what would happen if we keep the sizes of the t
species equal and change only the two repose angles of

e

nt

FIG. 7. Plateau regions in the order parameter in dependenc
the slope parameters0 . The outer regions correspond to two total
segregated configurations withh'1 andh'21, while the central
plateau aroundDs/s050 corresponds to a disordered configur
tion with h50. Note that the two additional, partially segregat
configurations appear betweens05n10.5 ands05n11, where
n is an integer.
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species. It would be interesting to explore the phase spac
including the difference in the two repose angles into
models. Also, our models can be extended easily to acc
for more than two different sizes of particles. Work is und
way to see the outcome of considering a specific distribu
of particle sizes.

FIG. 8. Diagram of~a! segregated configurations within mod
A and ~b! the corresponding sandpile configurations.
by
e
nt
r
n

In conclusion, our models display a rich variety of diffe
ent segregated phases of which only a few have been
served experimentally@4#, namely, the size segregatio
where the large particles are found on the bottom and
small particles on the top of the sandpile and the s

FIG. 9. Diagram of~a! segregated configurations within mod
B and ~b! the corresponding sandpile configurations.
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stratified configuration. In the theoretical description@12,13#
of the observed configurations the study was restricted
negative surface creep differences under the assumption
large grains roll more easily on top of small grains than
reverse. The question arises if the opposite segregation~with
large particles on the top and small particles on the bottom
e

re

-
y

to
hat
e

of

the sandpile! is possible to be achieved experimentally by
appropriate choice of grains.
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