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Order parameter and segregated phases in a sandpile model with two particle sizes
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We study the behavior of two one-dimensional sandpile models with two different particle sizes in depen-
dence on the size dispersion and on the difference in the surface creep between the two types of particles. We
investigate the phase space and find several types of particle segregation that occur: two oppositely totally
segregated states, a striped state, and two oppositely partially segregated states. By defining an order parameter
for the size segregation we investigate the effect of the size dispersion and of the creep difference between the
two types of particles. At very small size dispersions the creep difference induces the size segregation; if the
sign of the creep difference is reversed, the size segregation in the sandpile is reversed too and the order
parameter changes its sign. In one of our models, in the absence of the creep difference the order parameter
grows continuously with the size dispersion from zero to its maximal value, a behavior that is reminiscent of
the behavior of the order parameter in the vicinity of a continuous phase transition in the absence of external
fields.[S1063-651X97)07108-0

PACS numbe(s): 64.60.Lx

[. INTRODUCTION case of the segregation in sand ripples under the external
wind a cellular automaton model has been successfully ap-

Recently, much work has been done on trying to underplied recently{14] and the difference in creep dynamics be-
stand the unusual properties of granular maftigr In par-  tween the two types of particles has been shown to be crucial
ticular, a size segregation of a large number of granular parto explain the particle size segregation.
ticles of different sizes under external vibrations has been Although most of the sandpile models do not quite mimic
investigated[2]. A similar phenomenon occurs in sand a real pile of sand, they may shed light on different aspects
ripples or dunes where heavy grains accumulate on the cresf the behavior of the granular matter. Here we investigate
and light grains on the trough of a rippl8]. Recently, a two critical-slope sandpile models that differ from the “clas-
different phenomenon, a self-stratification on top of the sizesical” sandpile models by two propertie@) the size disper-
segregation, has been observed in the absence of any extersain (two different sizes of particlesand (i) the difference
perturbation4]. in the creep dynamics between the two particle species, in

There are several theoretical approaches that are used eoder to study systematically different types of particle seg-
study the phenomena described above. In 1987d8ai.[5]  regation during the evolution of the pile. Our aim is not to
introduced a cellular automaton model as a paradigm of thexplain the mechanisms of size segregation or self-
concept of self-organized criticaliyf5OC) [6,7]. Regardless stratification, but rather to explore the phase space defined by
of an initial configuration, the SOC system “self-organizes” two parameters{(i) size dispersion andii) difference in
into a critical state with power-law distributions of avalanchecreep dynamics. In order to classify different sandpile con-
amplitudes, provided that certain conditions, such as sloviigurations we define an order parameter that differentiates
external driving[8], are met. However, most experiments on between random and phase-separasérke-segregatgdon-
granular materials disagree with power-law predictions; sedjgurations.

e.g., Ref[9] and references therein. Rather, the sandpile be- We consider two different sandpile models in the limit of
havior is reminiscent of the properties of an equilibrium sys-slow driving rather than having a constant flux of incoming
tem close to a first-order phase transition with hysteresiparticles. The two models under consideration differ in the
[10]. Along these lines a continuum description of the dy-definition in the local slope. In the first modé, the local
namics of sandpile surfaces has been developed that take®pe depends on the size of the rolling particle, whereas in
into account two populations of grains, immobile and rollingthe second modeB, the size of the rolling particle does not
[11], and as such yields better agreement with experimentadffect the local slope. In the limit of a very small size dis-
findings. persion both models coincide.

In order to explain the self-stratification phenomeféh In Sec. Il a brief description of the models under consid-
the continuum description has been extended to a pair daération is given. A comparison with other existing models is
specieg12]. Further studies have shown that the key requiremade. In Sec. lll the order parameter is defined and its im-
ment for self-stratification in granular mixtures is a differ- portance stated. In Sec. IV we present the results of both
ence in the repose angles of the two pure species, wherea®dels. In addition to the expected size segregation in the
for a size segregation of the species to take place the sizandpile(large particles on the bottom and small on the)top
dispersion is needdd 3]. In this specific problem of explain- we find the opposite segregati¢emall particles on the bot-
ing the self-stratification, the cellular automata modelstom and large particles on the fop\lthough we are not able
proved to predict the behavior very well. Also, in anotherto change the difference in the repose angles of pure species,
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FIG. 1. Schematic diagrams for the two mod-
els considered. The reflecting and absorbing
walls are at the left and right of the pile, respec-
tively. In both case#\ andB the shaded particle
is the rolling particle at the active site. Note that
in model B the criterion for toppling is indepen-
dent of the size of the rolling particle.

Model A Model B

the difference in the two repose angles arises, however, for the distribution function of avalanche sizég. Under certain
certain range of parameters due to the finite size of particlesonditions the distribution functions in one-dimensional
and thus we also find a self-stratified, i.e., striped configurasandpile models have been found to scale in a multifractal
tion, such as observed and theoretically explaipgd2,13.  way [15].
In addition to the three configurations described above we Four differences between the LL model and the models
find within both models two partially segregated configura-presented here are thé) our models topple at most one
tions that exist only at small size dispersions. We pay attenparticle from an active sitegii) particles are added exclu-
tion specifically to the behavior of the order parameter in twasively to the first site at the reflecting waliji) the added
limiting cases. First, at zero creep difference within modelparticles are a random mixture of two species, i.e., two sizes,
B the order parameter is zero for all values of the size disand(iv) the critical slope depends on the type of the rolling
persion, whereas in modél the order parameter increases particle and the particle below it, i.e., the critical slope is a
continuously from zero with size dispersion. Second, in thdocal variable. Differencesi) and (ii) are actually simplifi-
limit of a very small size dispersion both models coincidecations of the LL model, which in the case of only one type
and the corresponding order parameter shows a discontiniwf particle yield a trivial and thus uninteresting behavior. As
ous behavior as the sign of the creep difference between tHer (iii), we choose two different heights of particles,
two particle species is changed. The conclusions are drawwhereas their widths are the same. Other possibilities for
in Sec. V. achieving(iii) not considered in this paper are to choose two
different species that are of equal sizes but differ by some
other quantity, either by the ma§#4] or by the angles of
repose of pure species. Biy) we introduce into our models
The models considered in this article are simplified ver-different creep dynamics for different combinations of the
sions of the local-limited (LL) model introduced by rolling particle and the particle below it. This difference
Kadanoff etal. [15]. The models presented are one-comes from a difference in frictiotwhich in real sandpiles
dimensional critical-slope sandpile models with one reflectcould come from different shapes of graifmtween differ-
ing and one absorbing wall. The starting condition for theent particles and is an intrinsic property that distinguishes
simulation is an empty lattice in which particles are added t@ranular matter from a fluid.
the first site, adjacent to the reflecting wall. Because the ad- The pile is initially built by choosing at random one of the
dition of a particle is followed by a relaxation of the system, two types of particles to be added to an empty lattice. For
the pile builds up with the site heights decreasing from theconvenience, we choose to have equal “volumes” in the pile
reflecting to the absorbing wall. Similarly to other critical- at any given moment of the simulation for each of the two
slope models, the relaxation step takes place only on activ@ize populations. This means that if, for example, we have
sites, defined as a sifewith local slopeh,—h;.  that ex-  Sizess;=1 ands,=2, then particles witls; will be chosen
ceeds a critical value,. An active site relaxes so that the With 67% probability while particles witls, will be chosen
topmost partic|e “topp|es” from site to sitei +1. This top- with 33% prObablllty This condition is introduced so that
pling may yield the neighboring site to be active in the nextspatial ordering can be easily identified visually.
step causing the relaxation rule to be repeated until all the We consider two different relaxation rules that define the
local slopes are smaller or equaldg. The iterative relaxing two modelsA andB. In modelA, a sitei becomes active
process readily produces slides, or avalanches, to occur ¥hen a new particle is added to it at timeand the local
the system. In our case this relaxation means that the add&ppe defined between this sitend sitei +1 is bigger than
particle rolls downhill until it reaches a stable site. As in the o (See Fig. 1 If sitei is active, the following relaxing rule
Bak-Tang-WiesenfeldBTW) model[5], particles are added applies:
to the systentin our case to site)lonly when all the sites are
found to be stable and no more topplings occur. Under this
condition, the system is said to be driven very slowly be- H(i,t+1)=H(i,t)—s,
cause the response of the system is much faster than the
external perturbatiorf16]. Typical results from the BTW
simulations result in power-law scaling of quantities such as H(i+1t+1)=H(i+1t)+s, D

Il. MODELS
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rolling particle and the particle below it are different. In par-
ticular, the above equation differentiates between the two
situations: One is achieved when a small rolling particle is
on the top of a large one and the other is the reverse. In fact,
it has been pointed out that large grains may roll more easily
on top of small grains than small grains roll on top of large
grains [13]. This situation is realized in our models for
v<0. If the rolling particle is of the same type as the one
below it, theno.=0y. This means that if the pile was
formed by a single species, no matter which of the two types
of particles we would take, the final repose angle would be
the same. This is of course a simplification. However, in the
general case where the sigef the particles is not commen-
surate with the critical slope, the angle of repose within
model A will be ns, wheren is the largest integer such that
ns<og and (n+1)s>o,. Within modelB under the same
(a) (b) conditions, the angle of repose is equal tieH1)s (since the
size of the rolling particle does not enter the rules in model
FIG. 2. Schematic diagrams for the ordered phases exhibited bg). This means that by an appropriate choice of the two sizes
the size segregation. The lirL indicates the boundary between and the slope parameter, we can achieve a difference in

the two different particles with the small, phase #1), and  pe repose angles of the two types of particles.
large, phase Il = —1), particles on the top.

Phase | Phase Il

provided thatH(i,t)—H(i+1t)>0. [see Fig. 2a)]. Here
s is the height of the rolling particle and(i,t) is the total
height at sitei at time stept. In modelB, a site becomes . . .
active only when the relative height of its site minus the size Because the §andp|le mo‘?'e's und_er consideration are
of the rolling particleH(i,t)—s and the height of the next COmPOsed of particles of two different sizes, the outcome of
site H(i + 1) exceedsr, [see Fig. 1b)]. As a consequence & S|mglat|on exhibits different phenomena related tO.thIS al-
of this rule, in modeB the condition for a site to be active is t€rnative degree of freedom. In order to charaterize and
independent of the size of the rolling particle. quantify different realizations, we define an order parameter
Rule (i) is similar to that of the LL model, but the pres- that takes into account the spatial distribution of the particles
ence of the size dispersion in the system introduces an addi the pile.
tional noise that may affect the configuration of the system. Under certain choices of parameters, both of the two mod-
This additional noise is not present in the BTW and LL els exhibit one of two ordered phases in which the particles
models because the particles are of the same size and onsegregate according to sizege Fig. 2 The boundary of the
they are “buried” inside the pile they cannot affect any of segregated system can be approximated by a diagonal line
the dynamics that happen on the surface where the slidesL that cuts the pile into two regions. The two ordered
occurs. In the presence of the size dispersion, since the totghases are distinguished from each other; in phase | the
height at a given site is made of a sequence of buried pasmall particles accumulate on the top of the pile and in phase
ticles of different individual sizes, the order in which par- || the pig particles are on the top. We introduce an order
ticles arrive and the amount of each type will affect the dy-parameters, as defined in the order-disorder transition of

namics as well as the landscape of the surface. There is HB-type alloys[17]. We choose phase | to be the ordered

implicit dependence of the behavior of the system on thestate with the maximal order paramete+ 1. Our order pa-

way that the pile IS built, or a hlstory depgndence. rameter then measures the fraction of particles correctly
Surface creep difference is introduced in each of the twg

models by modifying the value @f; according to the type of flicgdbzzlt?i\é;tgrtgi pgizecl(') -I;;Orsbteh;nogi'?gigf(l)? V;i.gglsne
a rolling particle and the particle below. In particular, we wo su : : v post parti

choose the equation above the diagonal lin8L, the other one the positions below
that line, respectively. In the completely ordered phase I, the
sublatticea accommodates small and the sublatticéarge

, 2 particles. The order parameteris then defined by

Ill. SIZE SEGREGATION AND ORDER PARAMETER

Sr—Sg

o.=09| 1+ 7y

max

wheres andsg are the sizes of the rolling particlen top

and the particle below, respectively, is the critical slope

of the rolling particle on the top of the particle of the same
size (St=Sg), Smax IS the value of the size of the largest
particle in the system, angl is an adjustable parameter that
affects the strength of the creep difference. The functional
form of Eq. (2) allows for the modification tar, when the

(1+7)=N3, )

| Z

(1—75)=Np,

A Z
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MODEL A

@

(a)

(b)

=%

<)

[C)]

(e)

(1—7)=Ng,

(1+7)=Np,

A Z

where N’y( is the number ofX particles in they sublattice.

From the above definition we choose=1 for phase | and
therefore obtainy=—1 for phase ll(all particles are oppo-
site to the ordering in phasg Defined in this way, the range

of values of7 is from —1 to 1. In a disordered phase the
order parameter vanishes since there are many wrongly pox
sitioned small and large particles in each respective subla

tice.

IV. RESULTS

In all our simulations we set the size of the small particle

to 1 and vary the size of the large partickes,,. The size
dispersion is then defined ag,,—1. The other relevant pa-
rameter in our study is the relative creep differenc
Aalagy, whereA o= y(Smax—1)/Smax- The critical slope for a
small particle on the top of a large one

the top of a small one is s= o+ Ac. In this section we

study the configurations and order parameter in dependen

on the above two relevant parameters.

A. Model A

@

is then
os =0po— Ao and the critical slope for a large particle on

AND LUIS CRUZ

5)

FIG. 3. Configurations ob-
tained within modelA at several
relative creep differencedo/oy
=1(1), 0.5(2), 0(3), —0.5(4),
—1(5) and at several dispersions
Smax—1=0.001(a), 0.02 (b), 0.37
(c), 1.06 (d), and 3.12(e). The
system size is L=50 and
09=28.28. The values 0§,,—1
are chosen in such a way that the
angle of repose of small particles
ogg is smaller than the angle of
repose of large particles, | .

to the bottom of the pile as,,,, increases.

The creep difference has an effect of switching the segre-
gation of large and small particles that can be noticed par-
ticularly at the smallest dispersiay,,,—1=0.001. At this
small dispersion, even small positive and negative values of
Aolog can cause the opposite segregation of large and small
particles. Namely, at positive values of the relative creep
difference, large particles tend to be on top of small particles.
This occurs due to the reduced critical slope
os.=0y—|Ac| for small on top of large particles as com-
pared to large on top of small particlegs= oo+ |Ac]|. This
eans that small particles slide easily over large particles.
on the other hand, negative creep differences correspond to
smaller critical slopes for large on top of small particles
o s<og , meaning that large particles slide easily over
small particles. For negative creep difference there is only
one phase because the negative creep difference adds up to
ghe overall tendency of large particles to pile at the bottom of

the sandpile.

At positive creep differences and large dispersions
eSmax—1>1 a competition effect is more apparent. The com-
petition is between the tendency of small particles to roll
easily and the large particles to have a high friction over
small and the tendency of large particles to violate the criti-
cal condition for rolling easier than small particles. As one
(sf:ém notice in Fig. 3, the corresponding configurations vary
rom almost randonte.g.,Sma=4.12 andAo/oy=0.5) to a
more ordered, almost
Smax=2.06 andA o/ oy=1.0).

Figures 4a) and 4b) show the order parameter as de-

stripelike  configuratiore.g.,

Figure 3 shows typical configurations of the sandpile affined in Eq.(3), as a function of the size dispersispa—1
several surface creep differenaks/ o and several size dis- and the relative creepo/oq, respectively. There are two
persionss,.—1. The dark and light colors correspond to interesting limiting cases that are worth consideritigthe
large and small particles, respectively. zero relative creep differencko/oy=0 and(ii) the limit of

As might be expected, &to/oy=0 and smalk,,—1the small size dispersioB—1<1.
arrangement of the particles is random, as a consequence of In case(i), Fig. 4a), filled diamonds, the order parameter
the random sequence of particle drops. As a function of in# can be studied in dependence on the size dispersion
creasings,,. (for all Ag/oy), the system tends to assemble spa—1. As presented in Fig.(d), the order parameter van-
with large particles at the bottom of the pile. This tendencyishes at zero dispersion. An interesting dependence af
can be particularly observed for all,catAc/oy=0. Itisa Smax—1 at zero creep difference is shown in Figcy where
result of large particles satisfying the criterion to roll easily » is presented together with a fi#(As)= nyarctan@As),
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Order parameter 1

—es_.-1=0.001
o—-os . ~1=0050
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FIG. 4. (a) Order parameter; in dependence on the size disper-

sionsy,.—1 at several fixed values of the relative creep difference

Aoloy=-1,—-0.5,0,0.5,1 andb) » in dependence on the relative

creep differencel o/ o, at several fixed values of the size disper-

sion S,,—1=0.001,0.05,0.55,3.5,7.2 within modal (c) The or-

where As=s,,,,—1. We find «a=2.73 and7,=0.89. We
confirmed that the value o#, depends on the system size,
i.e., the larger the system, the closgy will be to the maxi-

mal value of 1. This behavior is reminiscent of the behavior
of the order parameter in the vicinity of the continuous phase
transition, i.e., the order parameter goes to zero continuously
with the exponenig=1 [found by expanding arctax)( at
small x]. The dispersion parametsf,,—1 can be consid-
ered as the difference in concentration between the two types
of particles. Because the two partial volumes of the two
types of particles are kept equal, the relative number of large
particlesN, versus the number of small particléss de-
creases as the size dispersion incred¢etNg=s, .. The
difference in relative concentrations may be defined as
(Ns=Np)/(Ns+Nyp) = (Smax—1)/(Smaxt 1)

In case(ii), Fig. 4b), filled circles, we consider the order
parameters in dependence on the relative creep difference
Acdl/aq. In analogy to phase transitions, we can associate the
creep difference with the role of an external ordering field,
which by inverting the sign inverts the sign of the order
parameter. As shown in Fig(), there are two sharp jumps
in the order parameter arourddsr/oy=0. We conclude that
the relative creep differendexternal field induces a discon-
tinuous transformation from a disordereg=€0) to an or-
dered (p#0) configuration at small size dispersions. At
larger size dispersions the transformation becomes continu-
ous and the system goes through a continuum of configura-
tions, from a disordered to one of the two possible segre-
gated states.

B. Model B

In model B, the overall tendency of large particles to
assemble at the bottom of the sandpile is absent because the
dynamical rules do not take into account the size of the roll-
ing particle when changing the local slope. This means that
there is no mechanism to induce size segregation in the ab-
sence of the creep difference, as is the case in mad&his
is particularly apparent in Fig. SA(o/0¢=0) and Fig. 6a),
where as a function of,,, the system remains in a disor-
dered state, in contrast to Fig. 3 at the same parameters.

On the other hand, the creep difference preserves the abil-
ity to induce size segregation. As in mod& for
Smax— 1<€1, negative creep differences allow large particles
to slide easily on the top of small particles, so that large
particles tend to go to the bottom of the pile>0), while
positive creep differences cause large particles to experience
a large friction for rolling over small ones, so that large
particles tend to remain at the top of the pile<0). At
largers,,ax and positiveA o/ o, the part of the pile occupied
by the large particles becomes “infected” by small particles.
A striped configuration is seen at larggx and negative
Acolayg.

Figures 6a) and Gb) show the behavior of the order pa-
rameters in dependence of the size dispersgp,—1 at a
few fixed values of the relative creep differente/ o, and

der parametery at a zero creep difference in dependence on? in dependence on the relative creep differedag/ o at

Smax—1 behaves agjarctafa(spax—1)] (solid line) with «=2.73

several fixed values of the size dispersgg,—1, respec-

and 77,=0.89. Each individual point in the three graphs is a resulttively. o . _
of averaging over 100 different configurations. The size of the sys- The limiting case ofy versusA o/ for small size dis-

tem isL=50 andoy=28.28.

persions has the same behavior as in mddetase(ii) [see
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MODEL B e — 1 A\

m ) @ @ )

FIG. 5. Configurations ob-
tained within modelB at several
relative creep differenced o/
=1(1), 0.5(2), 0(3), —0.5(4),
—1(5) and at several dispersions
Smax—1=0.001(a), 0.15(b), 1.55
(c), 2.6(d), and 3.55(e). The sys-
tem size isL=50 ando=8.28.
The values ofs,,,;,—1 are chosen
in such a way that the angle of
repose of small particleggg is
smaller than the angle of repose of
large particlesr .

[C]

(b}

Aa
. [C]

(d)

(e)

Fig. 6(b)]. At S 1<<1, there is a jump in the order param- at the bottom, under the same conditions that were recently

eter 7 at the point where\ ¢/ o, changes sign, meaning that established13].

the external field induces a transition into the two ordered BY observing the formation of the striped configuration in
states (= +1). The fact that in modeB the random con- our simulation, we detect a kink that grows from the bottom
figuration (=0) occurs atAa/o,=0 for all size disper- 10 the top of the pile and creates a double layer of small
sions “pins” the curves in Fig. @) to go through the same particles below and large particles above. The kink is formed
point 7(Ac/oy=0)=0, whereas in Fig. &) the curves Dy awall started by a large particle at the bottom of the pile.
cross thep=0 line at differentA o/ o, if at all. This wall acts as a barrier that particles cannot cross. Since
large particles slide easily on top of small ones, they are
stopped only by this barrier at the bottom. The formation of
. ] _a double layer ends when the wall moves to the top of the
In addition to the two totally segregated conflguratlonsp”e_ Stripes, observed in mod8| are thus formed in double

that always appear at small dispersions in both models fofyers, as seen in experiment as well as modeled and treated
opposite signs of the surface creep difference, there is apheoretically[4,13).

other interesting configuration that is found. This configura-
tion is the striped configuration, created by layer segregation
(self-stratification composed of a layer of small followed by
a layer of large particles. This configuration has been ob- Here we consider the behavior of the order paramgier
served in a sandpile experimeft] and has been studied dependence on the slope parametgy i.e., the critical slope
theoretically[12,13. It has been shown that two require- Of & particle on the top of another particle of the same type.
ments have to be fulfilled in order for self-stratification to We are interested in the region of very small size dispersions
occur: ogg<o,_ (the repose angle of small particles is Smax—1<1 where both models display similar behavior. In
smaller that the repose angle of large particlesxd both models at a small dispersisgp,,—1=0.001 the order
o s<og, (large grains roll more easily on the top of small parametery shows a discontinuous behavior. For example,
grains than small grains roll on the top of large grains in Figs. 4b) and Gb), at negative creep differences the order
In Figs. 3 and 5 we have chosen such valuesgf that  parameter is close to the maximal value 1, whereas at posi-
the first requirementrss< o, is met, whereas the second tive creep differences it is close to its minimal valud.
requirement is met for negative values of the creep differ- There is a plateau in order parametgrat small creep
ence. Although within modeh the striped configuration is differences around;=0. In other words, at very small dis-
not very pronounced, a slight tendency towards such an opersions there is only a discrete set of possible configurations
dering can be observed at positive creep differences, wheit@at differ by the value of the order parameter. The pile may
the tendency of large particles to assemble at the bottom dfe totally segregatetWith either » close to 1 ory close to
the pile competes with the tendency of the external field to—1) or totally disordered withy=0. However, the exact
push the small particles to the bottom. This stripy configuranumber of possible configurations still depends on the slope
tion is accompanied by the opposite size segregdsamall  parametew. Figure 7 shows different plateaus for different
particles at the bottom and large at the top of the)pile o at a fixed size dispersiog,,=1.001. Atoy=1.1, for
opposed to the original observatip#]. In modelB, on the example, there are three plateaus: The two outer ones corre-
other hand, we find the striped configuration accompanied bgpond ton~—1 and »~1 and the middle plateau corre-
size segregatiofas found in original worK4]) at negative sponds ton»=0. At certain values ofoy, for example,
creep differences, which promote large particles to assemble,= 2.8, there are additional two plateaus, i.e., configura-

C. Striped configuration

D. Order parameter at small size dispersions
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FIG. 7. Plateau regions in the order parameter in dependence on
the slope parameter,. The outer regions correspond to two totally
segregated configurations wij=1 and »~ — 1, while the central
plateau around\a/oy=0 corresponds to a disordered configura-
tion with »=0. Note that the two additional, partially segregated
configurations appear betweery=n+0.5 andoy=n+1, where
n is an integer.

By comparing the diagrams of both models in Fig@) &nd

9(a) one can notice that all the curves are symmetric around
Aolog=0 in modelB and are slightly asymmetric at larger
dispersions in modeA. This is due to the fact that the ran-
dom configuration persists in modBlin the absence of the
creep difference, while it is shifted to positive creep differ-
ences in modeA.

Order parameter n

(b)
V. CONCLUSION
FIG. 6. (a) Order parameter; in dependence on the size disper- . ) o .
sion spa—1 at several fixed values of the relative creep difference I this paper we study size segregation in two critical-
Acgloy=—1,-0.5,0,0.5,1 andb) 7 in dependence on the relative Slope sandpile models that differ in the definition of the local

creep differencel o/ o, at several fixed values of the size disper- slope. In order to describe the system, we introduce an order
Sion Spa— 1=0.001,0.05,0.55,3.5,7.2 within mod®| Each calcu- parameter that is zero for a disordered system and varies
lated point on the graphs is a result of averaging over 100 differenfrom —1 to 1 as a function of external parameters of the
configurations. The size of the systemlLis 50 ando,=8.28. models. In addition to the size dispersion we introduce a
surface creep difference between the two types of particles.
tions with »=+0.33+0.01, between the totally disordered We investigate a two-dimensional phase space defined by the
state with=0 and the two outer totally segregated statestwo relevant parameters, i.e., the size dispersion and the sur-
They correspond to partially segregated configurations. Theace creep difference. We find several different possible seg-
absolute value of the inner limits of the two outer plateaus ategated states: two totally segregated states with order pa-
integer valuesry decrease witlry; we find the decrease to rametersy~ +1, a striped configuration, and two partially

be a power law with the power 0.97. segregated configurations wigr * 0.33 that appear only at
Next, we study all possible configurations within the dia-very small size dispersions.
gram Ao/ og vVersuss,,—1. The results for modeh are We show that in one of the moddimodelA) size disper-

presented in Fig. @) and for modeB in Fig. Aa). The slope  sion induces the size segregation even in the absence of the
parametew is chosen such that there are five different pos-creep difference, with an order parameter that grows continu-
sible configurations at small dispersioss,—1<1. The cor-  ously from zero to its maximal value. In both models the
responding configurations are plotted in Figb)8for model  surface creep difference acts as an external field. At very
A and Fig. 9b) for modelB. The partially segregated con- small dispersions, by changing the sign of the surface creep,
figurations consist of smalllarge particles on the bottom a discontinuous transformation from a segregated to an op-
and a random mixture of small and large particles on the toppositely segregated state is obtained.

Only at very small size dispersions are the transformations In this contribution we restrict our study to different sizes
between different configurations discontinuous. At largerof particles. This leaves untouched several questions. One of
dispersions the transformations between configurations behem is what would happen if we keep the sizes of the two
come smooth and continuous and all the plateaus disappeapecies equal and change only the two repose angles of pure
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FIG. 8. Diagram of(a) segregated configurations within model

A and(b) the corresponding sandpile configurations. FIG. 9. Diagram of(a) segregated configurations within model

B and(b) the corresponding sandpile configurations.
species. It would be interesting to explore the phase space by
including the difference in the two repose angles into the In conclusion, our models display a rich variety of differ-
models. Also, our models can be extended easily to accoumint segregated phases of which only a few have been ob-
for more than two different sizes of particles. Work is underserved experimentally{4], namely, the size segregation
way to see the outcome of considering a specific distributionwhere the large particles are found on the bottom and the
of particle sizes. small particles on the top of the sandpile and the self-
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stratified configuration. In the theoretical descriptjd2,13  the sandpilgis possible to be achieved experimentally by an
of the observed configurations the study was restricted t@ppropriate choice of grains.

negative surface creep differences under the assumption that

large grains roll more easily on top of small grains than the ACKNOWEEDGIMENT
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