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ABSTRACT Plaques that form in the brains of Alzheimer patients are made of deposits of the amyloid-b peptide. We analyze
the time evolution of amyloid-b deposition in immunostained brain slices from transgenic mice. We find that amyloid-b
deposits appear in clusters whose characteristic size increases from 14 mm in 8-month-old mice to 22 mm in 12-month-old
mice. We show that the clustering has implications for the biological growth of amyloid-b by presenting a growth model that
accounts for the experimentally observed structure of individual deposits and predicts the formation of clusters of deposits
and their time evolution.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder of the central nervous system (Kandel et al.,
1991), experienced by an increasing number of the elderly.
AD is associated with plaques, which are primarily extra-
cellular deposits of the amyloid-b (Ab) peptide (40–42
amino acids long), which is derived from the larger amyloid
precursor protein (APP). Although the role of plaques in AD
is not understood (Beyreuther and Masters, 1997), compel-
ling genetic and biochemical evidence suggests that Ab is
central to the pathological process in AD (Selkoe, 1994;
Goate et al., 1991; Cai et al., 1993).

The physical and biological basis of Ab aggregation is
unknown. Unfortunately, experiments do not allow for a
systematic study of the time development of plaques in AD
patients because brain tissues can only be studied post
mortem. The new technology of transgenic mice (Games et
al., 1995), however, makes it possible to study temporal
development of Ab deposits in diseased brains because
mice can be sacrificed at any stage of development. Fig. 1,
a andb, present, respectively, two photomicrographs from
brains of 8- and 12-month transgenic mice. The Ab deposits
(dark connected areasin Fig. 1) seem to cluster together
into larger formations that typically consist of a larger
deposit surrounded by many smaller ones. This is surprising
because the distribution of APP throughout the cortex of
transgenic mice is fairly uniform (Irizarry et al., 1997), and
thus one would have expected a uniform spatial distribution
of Ab deposits at any stage of aggregation.

In this paper we focus on the time progression of Ab
aggregation and its implications for how Ab forms in the
brain. The question that we address in particular is why
deposits are not uniformly distributed throughout the cortex
but tend to be close to one another in clusters and what are
the growth mechanisms (Vicsek, 1992; Herrmann, 1986;
Takayasu, 1990; Meakin, 1998) that account for the ob-
served spatial distribution of deposits. (In this paper we use
the term “cluster” to mean not a connected entity (as usually
used), but rather a correlated yet unconnected set of objects
(e.g., a galaxy).) The conclusions of the paper will be stated
in terms of the time evolution of the deposits and the
clusters of deposits.

To quantify the experimentally observed clusters of de-
posits and their time evolution (Fig. 1,a andb), we examine
photomicrographs from the temporal neocortex and hip-
pocampus of transgenic mice at 8 and 12 months of age and
calculate the correlation function,C(r), between deposits.
By definition, C(r) is proportional to the probability of
finding the center of mass of a deposit at a given distancer
from a reference deposit atr 5 0. In practice, we determine
C(r) by first identifying the center of mass for each con-
nected region (deposit) and then calculating the histogram
of distances between pairs of deposits.C(r) is normalized so
that it approaches the average number density of deposits at
large distancesr. Results for the averagêC(r)& are pre-
sented in Fig. 2,a and b (solid lines) for all photomicro-
graphs from 8- and 12-month mice, respectively.

As a control we randomly shuffle the deposits by placing
a disk with the area of the initial deposit in place of the
original deposit, and then randomize the positions of the
disks in a nonoverlapping way. For the control case,^C(r)&
(dashed linesin Fig. 2,a andb) is constant (noncorrelated)
everywhere except at very small distances, where it de-
creases because of the exclusion area of the deposits.

From inspection of Fig. 2,a and b, we see that̂C(r)&
shows a dramatically increased probability for finding a
deposit at smallr, in comparison tôC(r)& for the shuffled
controls. This means that we can definejcl, the character-
istic size of clusters, as the size where^C(r)& reaches the
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value of ^C(r)& for shuffled controls. For mice at age 8
months, the curves join at aboutjcl 5 14 mm, whereas for
mice at age 12 months,jcl is increased to 22mm. To
confirm the results from̂C(r)&, we determinejcl of each
C(r) calculated from an individual photomicrograph. Histo-

grams of individualjcl (Fig. 2 c) show peaks at 14mm and
22 mm for 8-month and 12-month mice, respectively.

The natural question that follows is: How doesjcl in-
crease in time? One possible mechanism is that the clusters
grow (jcl increases) because the deposits that form them
grow. We show that this is not the case and that instead the
deposits—whose characteristic size does not change with
time—cluster together, increasingjcl. To show this, we
calculatejdep, the characteristic size of deposits, by first
calculating the average deposit areaB from the size distri-
bution of deposit areas and then computingjdep5 2=B/p.
We find jdep' 1.36 0.5mm for both the 8- and 12-month
mice. This result is in accord with the observation that the
typical diameter of an Ab deposit in AD brain does not vary
as the illness progresses (Arriagada et al., 1992; Hyman et
al., 1995). Becausejdep does not change in time andjcl

increases from;11 3 jdep in 8-month mice to;17 3 jdep

in 12-month mice (Fig. 2,a and b), we conclude that
clusters grow because more deposits cluster together.

To study the implications of the above results for Ab
aggregation, we propose a phenomenological model that is
based on several experimental findings. From earlier studies
we know that a successful model of the experimentally
determined size distribution of Ab has to consider growth
that is proportional to the volume of the growing aggregate
(Hyman et al., 1995). Further work that revealed the poros-
ity of individual Ab deposits, using confocal microscopy
(Cruz et al., 1997), clarified that the model should take into
account disaggregation, which competes with aggregation,
as well as surface diffusion. (For a deposit to acquire a
typical porous structure with well-defined pores, the model
additionally takes into account surface diffusion—after ev-
ery step each particle in the lattice is allowed to move to one
randomly chosen neighboring empty site only if the new
position has more nearest-neighboring particles. However,
the model does not need surface diffusion to exhibit the
clustering and its further time evolution, as presented in this
paper.) Starting from these elements, the challenge is to test
the time evolution of the model against the experimental
results of Ab deposition.

FIGURE 2 Solid lines represent the^C(r)& of deposits from transgenic
mice at ages of (a) 8 months (21 micrographs) and (b) 12 months (22
micrographs). Dashed lines are the corresponding^C(r)& from the shuffled
controls. (c) Histograms of cluster sizes extracted from each^C(r)& corre-
sponding to individual micrographs.

FIGURE 1 Images taken with an optical microscope,
of samples of PDAPP transgenic mice (Games et al.,
1995) at ages of (a) 8 months and (b) 12 months (mag-
nification 163, size 100mm 3 100mm, depth 50mm).
A prominent feature of the upper left quadrant ofb is a
large cluster formed by many smaller deposits. Sections
were immunostained for Ab using antibody 10D5 (Hy-
man et al., 1993).
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The model is defined as follows. Starting from a random
arrangement of occupied sites (particles) in a discrete three-
dimensional lattice, each particle is chosen with equal prob-
ability 0.5 to duplicate or to be eliminated. This initial state
of randomly distributed “seeds” corresponds to the fact that
APP is uniformly distributed throughout the cortex (Irizarry
et al., 1997), and therefore the growth of deposits is equally
probable at any position. Furthermore, a particle chosen to
duplicate (aggregation) will do so with probabilityPagg,
and, if chosen to be eliminated (disaggregation), it is re-
moved with probabilityPdis. In the aggregation process, a
newly created particle performs a random walk from the
original occupied site until the first empty site is encoun-
tered. This yields a growth proportional to the volume in
agreement with experimental data (Hyman et al., 1995). The
equation for an average number of particles (fluctuations
due to a probabilistic nature of the model are not taken into
account),Nt11, at timet 1 1 is

Nt11 5 Nt 1
1

2
~Pagg2 Pdis!Nt (1)

The two probabilitiesPaggandPdis can easily be interpreted
as the aggregation and disaggregation rates, respectively. If
both Pagg and Pdis are kept constant, Eq. 1 yields either
exponential growth (ifPagg. Pdis) or exponential decrease
(if Pagg , Pdis) of the number of particles. This model can

be mapped onto percolation on the Cayley tree lattice (Har-
ris, 1989). Even forPagg5 Pdis, the fluctuations eventually
lead to the extinction of particles because the probability
that the descendants of any given particle survive until time
step t decreases as 1/=t. Because in the brain of AD
patients a relatively fixed percentage of cortical surface area
is covered by Ab deposits regardless of duration or severity
of dementia (no exponentially unstable behavior), we pos-
tulate a steady state. (Ab can occupy as much as 15–20% of
the surface area of the cortex of the AD brain; see, e.g.,
Arriagada et al. (1992) and Hyman et al. (1993, 1995).) To
achieve a dynamic steady state in the model, we introduce
a feedback that acts upon the disaggregation process such
that at every time step,Pdis is changed in proportion to the
change in the coverageNt/V (whereV is the total number of
sites in the lattice). Hence

Pdis~t 1 1! 5 Pdis~t! 1 w
Nt 2 Nt21

V
, (2)

where w . 0 parameterizes the feedback strength. The
feedback mechanism as introduced here postulates a global
response of the brain: a change in the disaggregation rate
due to the change in the overall amount of Ab. This re-
sponse is such that it tends to minimize the changes occur-
ring in the brain, thus naturally leading to a steady state. At
this point the model is defined completely.

FIGURE 3 Snapshots from the growth model simu-
lation after (a) 300 and (b) 4200 steps with two mag-
nified inserts. The simulation, on a lattice of size 5123
512 3 32, is started with 2.5% of scattered sites occu-
pied. The aggregation and disaggregation probabilities
are Pagg 5 Pdis 5 0.80. Although surface diffusion is
not needed for the model to exhibit the clustering, we
use in this simulation a surface diffusion corresponding
to 10 relaxation steps per particle at every time step.
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Some remarks about the above two equations are in order.
The equation for the average number of particles in the
model with feedback is defined by Eq. 1, withPdis 5 Pdis(t),
as given by Eq. 2. The solution of the combined recurrent
Eqs. 1 and 2 can be found by numerical iterations. However,
by approximating the differences in both equations by first
derivatives (thus neglecting the time delays), we can find an
analytic solution that is fairly close to the exact one. From
Eq. 2 we first findPdis to be a linear function ofNt, then we
insert the solutionPdis(t) into Eq. 1, solve it forNt, and find

Nt 5
N`

1 1 @~N` 2 N0!/N0# exp~2At!
, (3)

whereN0 5 Nt 5 0 is the number of initial “seeds,”N` 5
N0 1 V(Pagg 2 Pdis

0 )/w is the steady-state number of parti-
cles ast 3 ` (total coverage), which depends only on the
initial conditions (N0 and Pdis

0 5 Pdis(t 5 0)), and A 5
[Pagg 2 Pdis

0 1 wN0/V]/2 is the rate of approaching the
steady state. How do we understand this solution? Let us say
that the deposition starts with a small number of seeds
(small N0) randomly placed in the lattice and assume that
Pdis

0 5 0 (no disaggregation initially). ThenNt (the total
amount of deposited Ab) will keep increasing witht as well
asPdis until Pdis(t) is equal on average toPagg. At the same
time thatPdis(t) stabilizes, the total number of particlesNt

saturates as well, and the system is in a dynamic steady
state. The necessity of disaggregation and feedback pro-
cesses in the model highlights the importance of biological
modifiers (e.g., feedback clearance mechanisms such as
microglia; Paresce et al., 1996; El-Khoury, 1996) in shaping
the topology and microarchitecture of Ab deposits.

We now proceed to test the model by examining whether
it provides insight into the clustering phenomenon and
whether it is also able to explain the time dependence of Ab
deposition. Fig. 3, with the two magnified insets, shows the
time evolution of our simulation (to be compared with Fig.
1). Within the time scale of 300 steps the deposits form. The
clustering of deposits, however, is not very pronounced
until the time that is roughly one order of magnitude larger,
i.e., around 4000 steps. At 4200 steps (Fig. 3b), well-
defined clusters occupy an area that is small compared to
the system size and that depends on the total number of
occupied sites in the lattice (Meyer et al., 1996). As time
progresses the model predicts typically big deposits that are
surrounded by many smaller ones, thus forming clusters
similar to the ones observed in transgenic mice.

As in the experiment, we quantify the degree of clustering
in the model by considering cross sections from the simu-
lations at different times (up to 4200 simulation steps) and
calculating ^C(r)& (Fig. 4, a and b, with corresponding
shuffled controls). As in the experimental case,^C(r)& in-
creases at smallr. Furthermore,jcl increases with time (Fig.
4 c), in agreement with the results of the analysis of pho-
tomicrographs of transgenic mice at age 8 and 12 months.
On the other hand,jdep reaches a saturation value on the
time scale of 1000 steps, whereasjcl continues to increase

beyond 4000 steps (compare the two curves in Fig. 4c). The
model therefore predicts that after;3000 steps the deposits
of fixed sizes assemble into clusters, and the size of clusters,
jcl, increases with time, in agreement with the experimental
observations above.

The increase injcl can be understood within the model by
considering the asymmetry between aggregation and disag-
gregation (Meyer et al., 1996). We know that in the dynamic
equilibrium the average disaggregation rate,^Pdis&, is equal
to the aggregation rate,Pagg, which means that equal
amounts of particles, on average, are created and destroyed.
Let us consider the symmetrical case first. If the growth rule
would allow the duplicate particle to appear at any empty
site in the lattice, the distribution of particles would be
uniform and independent of time, and neither deposits nor
clusters would form. The asymmetry in our model is at-
tained because the duplicate particle occupies the nearest
empty site it encounters, whereas the disaggregation is
uniform (independent of the position). This asymmetry thus
permits small deposits to occur only very close to a big
deposit. As time progresses, the asymmetry leads to a higher
effective disaggregation probability for particles that are

FIGURE 4 Solid lines represent^C(r)& averages over 16 different cross
sections of the simulation, and dashed lines represent the corresponding
averageŝC(r)& of the shuffled controls after (a) 300 and (b) 4200 simu-
lation steps. (c) Time dependence of the characteristic deposit sizejdepand
the characteristic cluster sizejcl as predicted by the model.
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isolated and far from the big deposit, as opposed to the
particles close to it.

The experimental part of our analysis leads to the follow-
ing conclusions. Ab deposits in the brains of transgenic
mice are not randomly distributed throughout the cortex as
expected. Rather, they appear in clusters whose character-
istic size increases with the duration of the illness. This
study sheds light on the evolution of Ab deposits from the
initially uniformly distributed APP. In the second part we
give an interpretation of the observed clustering in trans-
genic mice within the phenomenological model, which has
strong implications for the understanding of pathological
changes in Alzheimer’s disease. Previously, diffuse, amor-
phous amyloid deposits observed in the brain of Alzheimer
patients have been called “primitive” or “immature”
plaques, implying that they “mature” into compact classical
senile plaques later in the disease process (Terry and Da-
vies, 1980). Our phenomenological model, data from trans-
genic mice, and preliminary results from human AD cases
argue against this paradigm and instead suggest that the
amorphous deposits are not the direct precursor of the more
compact senile plaques seen later in the disease. Instead, the
model predicts the time evolution of the morphological
appearance of Ab deposits from smaller to bigger clusters
of plaques. Moreover, the model presented here supports the
idea that Ab deposition may be a reversible process, with
aggregation and disaggregation as its essential components,
a feature of critical importance for therapeutic strategies
aimed at resolving Ab deposition.
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