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Microcolumns are a vertical arrangement of neocortical neurons that
may constitute a fundamental computational ensemble but have been
difficult to study morphologically because of the challenges of deter-
mining the three-dimensional (3D) spatial arrangements of individual
neurons in the ensemble. Previously, a statistical density map method
was developed to characterize microcolumns using two-dimensional
(2D) coordinates of neurons from thin tissue sections. Here we extend
this approach to derive the relationship between these 2D density maps
and the actual 3D properties of microcolumns by creating a theoretical
3D model of cortical neurons. In seven steps, we transform a 3D initial
arrangement of neurons from a crystalline lattice, with distances and
neuron numbers approximating the idealized cortical microcolumn as
assayed by our 2D density map analysis, into a model whose neuronal
locations represent a plausible 3D arrangement of neurons in the brain.
Because we constrain the transformations on the 3D model by the 2D
density map properties, the transformed 3D model will exhibit pro-
perties that are consistent with experimental findings regarding micro-
columnar anatomy in the brain. Moreover, because our methodology
only requires the x,y locations of neurons from thin sections, it is readily
accessible to any set of input data regardless of preparation or staining,
from human or animals. By generating 3D model neuronal arrange-
ments and comparing between control, aged, and diseased brain, our
method can be used to test hypotheses about the effects of neurological
diseases as well as normal aging on the 3D structure of microcolumns in
the brain.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

A prominent feature of the cerebral cortex is the columnar
organization of cellular bodies particularly evident in Nissl-stained
preparations of tissue in the temporal cortex of humans and other
primates. These organized vertical neuronal structures have been
termed minicolumns (Mountcastle, 1997, 2003), although they
sometimes share terminology with other possibly related intracor-
tical elements such as bundles of apical dendrites (Peters, 1994;
Rockland and Ichinohe, 2004) or axons of pyramidal cells and
pyramidal cell modules (DeFelipe, 1990; Jones, 2000). Physiolo-
gical evidence of microcolumns may be found from tracer studies
in area TE in monkey brains (Saleem et al., 1993) and studies by
2-deoxyglucose labeling in primary somatosensory cortex of mon-
keys and cats (Tommerdahl et al., 1993). Studies have also indi-
cated that neurons in the microcolumn may be more interconnected
than those outside the microcolumn (Constantinidis et al., 2001;
Vercelli et al., 2004) and microcolumns have been proposed as a
basic computational unit of the cortex (Mountcastle, 1957, 1997,
2003; Peters and Sethares, 1996; Buxhoeveden and Casanova,
2002a). On the other hand, there are other studies that indicate that
this characterization of the microcolumn as a fundamental unit of
organization and function is not without problems (Jones, 2000;
Rockland and Ichinohe, 2004; Buxhoeveden and Casanova, 2005;
Krieger et al., 2007). Even studies of “whisker columns” or barrels
in the rodent somatosensory cortex, that are the anatomical equi-
valent of a functional cortical column, indicate that they are not a
functional unit consisting of cells with similar functional properties
(Helmstaedter et al., 2007). Indeed, it has recently been argued that
even the very well established and much studied ocular dominance
columns seem to not serve a purpose (Horton and Adams, 2005).
Thus, the issue regarding the functionality of microcolumns, al-
though debatable, is still important and relevant where the definite
proof of function is an open question and one that awaits empirical
confirmation (Jones, 2000; Mountcastle, 2003; Rockland and Ichi-
nohe, 2004).

mailto:ccruz@bu.edu
http://dx.doi.org/10.1016/j.neuroimage.2007.12.042


Table 1
Correspondence between the step number, the affected parameters at that
step, and the measures of microcolumnarity that either significantly change
or are constraints of each step

Step
No.

Affected parameters Relevant
measures

0 All variables form a perfect lattice P, Y
1 Add interneurons as % of total neuronal count S, T, bρN
2 Adjust total neuronal count to match 2D neuronal density bρN
3 Add a random variable to y0 T
4 Add a random variable to dn L, Y
5 Add a random variable to xn, zn S, T, W
6 Add a random variable to xc, zc T, ρ(x)
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There are many studies concerned with properties of micro-
columns and associated structures. For example, there are studies on
“cellular” microcolumns (see reviews by Buxhoeveden and Casa-
nova, 2002a,b), pyramidal cell modules (Peters and Kara, 1987;
Peters and Sethares, 1991; White and Peters, 1993; Peters and
Sethares, 1996; Peters, 1994; Peters, et. al., 1997), and bundles of
myelinated axons (DeFelipe et al., 1990; Peters and Sethares, 1996).
These studies exemplify a larger body of work that tries to under-
stand the vertical structures in general and that provides a wealth of
data related to anatomy, connectivity, and function. These data,
however, fall short when addressing a crucial question: the
distribution of neurons within and between microcolumns. This is
an important issue as it is clear that for example the three-
dimensional (3D) structural arrangement of neurons around the
central bundle of apical dendrites is a critical feature of the
microcolumn and its functions. Yet experimental studies of the
spatial arrangements of these neurons have been hampered by many
technical limitations that prevent these spatial arrangements from
being studied efficiently and quantitatively. For example, one could
prepare thick plastic sections in which the 3D locations of every
neuron are manually marked. This preparation, however, is only
practical for small studies of limited areas, preventing studies of
entire cortical areas, or large subject populations. Moreover, the
required thick plastic sections would have to be specially prepared as
most tissue banks and brain section archives consist of thin paraffin
sections (5 to 15 µm thick), thin frozen sections (10 to 60 µm thick),
or thin celloidin sections (30 to 60 µm thick) (see for example: www.
brainmuseum.org and www.brainmaps.org).

Several different approaches have been developed to quantify
microcolumnar properties by using instead the two-dimensional (2D)
coordinates of neurons obtained from widely available thin sections
(Buldyrev et al., 2000; Buxhoeveden et al., 2000a; Cruz et al., 2005).
These methods are of interest as they have provided evidence of
changes in microcolumnar properties in a number of different condi-
tions that suggest the potential functional significance for different
microcolumnar properties. For example, there are studies of struc-
tural differences of microcolumns: across different species (Buxhoe-
veden et al., 2001), across different cortical areas within one species
(Cruz et al., 2005) aswell as in normal aging (Cruz et al., 2004), in the
AD brain (VanHoesen and Solodkin, 1993; Buldyrev et al., 2000), in
schizophrenia (Benes and Bird, 1987; Buxhoeveden et al., 2000b), in
Down's syndrome (Buxhoeveden et al., 2002), in autism (Casanova
et al., 2003), and in dyslexia (Casanova et al., 2002). In particular, the
density map method (Cruz et al., 2005) uses the 2D x,y experi-
mentally obtained coordinates of neurons to characterize micro-
columns by “measures,” such as the strength of microcolumns (ratio
of the density of neurons within a definedmicrocolumn to the density
of neurons in the ROI). Other measures include the width, length,
strength of periodicity of nearest neighbor microcolumns, inter-
columnar distance, and the vertical distance between neurons within
a microcolumn.

Despite the utility of the density map method and its ability to be
applied to large samples of tissue sections including most archival
brain-banked material, there is currently no clear way to determine
how changes in these measures derived from 2D projections of
neurons relate to the true 3D spatial locations of neurons in the brain.
To address this problem, we utilize the microcolumnar measures
listed above with a new modeling approach presented here to de-
scribe and construct a plausible 3D representation of microcolumns
in the sampled tissues. This approach of empirical density map data
and a 3D theoretical model uses as input only the experimental x,y
coordinates of neurons acquired from Nissl-stained thin sections.
This method takes into account z-axis tissue collapse typical in
Nissl-stained thin section samples and also the fact that these thin
sections, because of the intrinsic curvature of the brain, are cut at
angles that are rarely normal to the surface of the brain.

In this paper, we first describe in Methods the seven steps that
transform a 3D arrangement of neurons from a crystalline lattice into
a spatial arrangement with the same statistical properties, as dictated
by its 2D density map, as the experimentally obtained neuronal
positions from tissue. Following this, in Results, we illustrate the
application of the method to construct 3D arrangements of neurons
using as input the density map data derived in Cruz et al. (2005) from
layer III neurons of area 46 of the rhesus monkey.

Methods

Model construction: general remarks

A prerequisite for the method presented here is the knowledge of
the measures of microcolumnarity of the system for which the 3D
model of neurons will be constructed. We define these measures as
the “target” (experimental) measures. The method then starts with a
theoretical arrangement of neurons in 3D initially arranged in a
crystalline lattice based on morphological data where neurons are
individually and progressively adjusted over the course of six re-
maining steps to produce a 3D model that best fits the target
measures. Each step is designed to affect at least one of the measures
while producing only minor changes to the other measures (Table 1).
After each step, we monitor the effect of that change on all of the
measures of microcolumnarity of the model and adjust the magni-
tude of the change to match the measure from the 3D model to the
target value. In general, each step consists of (i) generating N 3D
blocks of neurons modified by the number of steps under scrutiny
(each block is denoted as one “realization”), (ii) “cutting” one thin
slice through each transformed model block (to obtain N slices) at a
random orientation and inclination to generate a set of 2D “sec-
tions”, (iii) applying the density map analysis to those N sections to
derive one set of microcolumnar measures corresponding to that
step, and (iv) comparing the microcolumnar measures from the
model to the target experimental measures.

Model construction: steps in detail

Step 0—starting locations
The starting configuration for the 3D model (first step) is a cube

of size R containing neurons arranged in a perfect hexagonal lattice
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of parallel microcolumns with dimensions derived from empirical
parameters (Fig. 1). These neurons correspond to the “principal”
neurons or pyramidal neurons in tissue (long axon, excitatory). The
hexagonal lattice is a reasonable assumption for the starting ar-
rangement of microcolumns whose intercolumn and interneuronal
distances are based on P and Yof the target density maps (see below
for details). This assumption has an experimental basis from studies
of the packing of dendritic bundles and myelinated axons of pyra-
midal cell modules. Some of these studies demonstrated that the
positions of myelinated axons, when looking at tangential sections,
were regularly arranged in the monkey primary visual cortex (Peters
and Sethares, 1996). Other studies reported a hexagonal spacing
between bundles in area 17 of the visual cortex of rats (Peters and
Kara, 1987) and monkeys (Peters and Sethares, 1991), and in the
human medial prefrontal cortex (Gabbott, 2003). However, regu-
larity in the distribution is not universal, as for example one study
reported results on neuronal and bundle packing that were incon-
sistent with a hexagonal arrangement of bundles in the rat primary
somatosensory cortex (Skoglund et al., 2004). For this reason, the
model also allows for the hexagonal lattice to be randomized (see
step 6 below) to accommodate other less regular arrangements of
microcolumns, thus allowing the model to depart from a perfect
hexagonal lattice where the degree of randomization is dictated by
the experimental density map measures, as described below.

The microcolumns are initially located at the vertex positions
(xc, zc) of a hexagonal lattice with spacing dc and the neurons at
positions (xn, yn, zn). At this step, the set of (xn, zn) coincides with
the set of (xc, zc). Along the vertical direction, the neurons are
separated by the same distance dn. Thus defining the component yn
of their positions by

yn ¼ y0 þ m � dn; ð1Þ
where y0 is a constant that is the same for all microcolumns and m
is an integer (Fig. 1).
Fig. 1. Schematic diagram showing the variables in the model. The dotted
lines form the hexagonal lattice on which microcolumns are initially posi-
tioned. The neuronal bodies used in the diagram only serve for illustration
purposes, as in the model each neuron is represented by a sphere with the
radius listed in Table 2.
The values for dc and dn are derived from the target density maps.
Specifically, the value of dc, the center-to-center distance between
microcolumns is determined from the microcolumnar measure P
corrected to take into account 3D effects (see Cruz et al., 2005,
Fig. 8D). The value of dn, the interneuron distance within micro-
columns, is determined from the position of the first peak of the
graph of the neuronal density along the vertical axis of the micro-
column, Y (see for example Cruz et al., 2005, Fig. 4) corrected by the
angle at which the tissue slices are cut in the model system. This
correction is derived by considering that Y is the result of averaging
over many experimentally obtained thin slices cut at slightly dif-
ferent inclinations, or in terms of the model, at different azimuthal
angles ϕ (this angle is defined in Generating thin slices). An ap-
proximate relationship between Y and dn is then given by

Z k=3

0
dn � cos/ d/ ¼

P
Y ; ð2Þ

where we are averaging over the trigonometric projection of dn on
the vertical axis and the limits for ϕ = [0,π/3] are taken as reasonable
limits for the range of cuts in the inclination of the tissue (see
Generating thin slices for an explanation).

Regarding the size of the cube R, there is no requirement on its
value except that it should be big enough to contain slices cut at
arbitrary orientation and inclination. For simplicity, we consider the
value of R to be the diameter of the smallest sphere that can contain a
cube of the size of our experimental ROI denoted by l. Then, con-
sidering a tissue slice with thickness s, the size of our block will be

R ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l=2Þ2 þ s=2ð Þ2Þ:
��r

ð3Þ

Step 1
In step 1, a number of “interneurons” are added at random posi-

tions throughout the block. These neurons correspond to non-
pyramidal neurons in tissue (short axon, mainly inhibitory) for which
their positional randomness assumes that they do not organize into
microcolumns. For simplicity, at this step we approximate neurons as
spheres with a fixed value for their radius that should correspond to
the average size of neurons in the tissue. These interneurons are then
added under an algorithm that first generates a random (x,y,z) location
for placement and then accepts the location provided the distance
between the center of the interneuron and any of the already present
neurons in the system is bigger (no overlap) than twice the amount of
its radius. If the position is rejected, another is generated until a
suitable location is found. We note that a more realistic model could
incorporate the experimentally available size distribution of neurons,
but based on the neuronal sizes and densities that we have tested,
using the average size of neurons is sufficient for proper placement of
interneurons. In more general terms, a sphere with radius equal to the
average neuronal size of the size distribution is a suitable approxi-
mation as long as the average and square root of the variance of the
size distribution are much smaller than the intercolumn distance.
Step 1 is only constrained by the interneuron population percentage.

Step 2
In step 2, the volume density of neurons is adjusted to match the

experimentally measured 2D neuronal density found in the tissue
sections, ρ. Specifically, a match between the 2D neuronal density of
themodel (from cutting thin slices, see next section) and the 2D target
neuronal density is done. Because the initial crystalline block will
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always have a higher density than the density found in tissue because
of its higher packing fraction, the neuronal density in the model is
adjusted by deleting a percentage of neurons at random (from both,
principal and interneurons) from the block of model neurons.

Steps 3 and 4
In steps 3 and 4, randomness is introduced in the vertical arrange-

ment of neurons. Specifically, in step 3, y0 is modified from being a
constant to be a number taken from a uniform random distribution
Fig. 2. Schematic diagram and example figures showing the rotation and cutting of
rotation in relation to the 3D block of neurons indicated by the cubic wire box. (B)
the slab indicated by the thin lines are cut in (C) and (D). (E) shows the neurons from
For visual clarity, the example shown is generated using steps only up to step 4.
between [0,1] multiplied by the interneuron distance in the vertical
direction, dn. This means that now individual microcolumns will be
assigned a value for y0 that ranges between 0 and dn. This step has the
effect that neurons within the samemicrocolumnswill be shifted up or
down, and neurons from differentmicrocolumnswill no longer be “in-
step” with one another horizontally. This step is justified by the fact
that neurons in tissue indeed do not align horizontally across micro-
columns. Step 3 is not constrained by any of the target measures. In
step 4, we introduce randomness in dn, the distance between neurons
one realization of the model neuronal block. (A) shows the axis and angles of
shows a rotated example of a 3D block of neurons where the neurons within
(D) collapsed into the x–y plane that is used to calculated the density maps.
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within each microcolumn. Specifically, the original distances where
the position of the i+1 neuron relative to the ith neuron is

diþ1
n ¼ din þ dn ð4Þ
are transformed to

diþ1
n ¼ din þ dn þ ddn; ð5Þ
where δdn is a random variable taken from a Gaussian random
distribution centered at 0 and of width σ. A Gaussian random dis-
tribution was a necessary choice over a simple random distribution in
order to obtain the shape of the curve found in Fig. 4 of Cruz et al.
(2005). The value of σ in step 4 is determined by values of L and the
shape of the curve for dn.

Steps 5 and 6
In steps 5 and 6, randomness is introduced in the positions of

the neurons within the horizontal x–z plane by transforming xn to
xn+δxn and zn to zn+δzn and in the positions of each microcolumn
by transforming xc to xc+δxc and zc to zc+δzc, respectively. The
Fig. 3. Front and top view of examples of configurations at step 0 (A and B), at ste
Each neuron has a vertical thin line whose base in the x–z plane is indicated by a
parameters δxn, δzn, δxc, and δzc are variables taken from a
uniform random distribution. We note that in step 5 the vertical
coordinates of the model neurons yn do not need to be corrected
since they were implicitly randomized when performing step 3 in
the randomization of y0. The parameters δxc and δzc introduce
randomness in the positions of the microcolumns having as a
consequence that the structure of the underlying hexagonal lattice
is reduced, with the potential to destroy all regularity depending on
the values of randomness. The range of values for the set of (δxn,
δzn) in step 5 are determined by the width, W, of the microcolumns.
The range of values for the set of (δxc, δzc) in step 6 are determined
by the broadness of the nearest-neighbor peak in the density map,
measured by analyzing the neuronal density perpendicular to the
axis of the microcolumn, ρ(x).

Generating thin slices

Akey procedure in themodel is the comparison between the density
maps derived from the model and those derived from experiment
p 3 (C and D), and at step 6 (E and F). The darker spheres are interneurons.
thin cross.
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that allows for the tuning of the adjustable model parameters to
match the target measures at each individual step. For this com-
parison to happen, we need to generate “thin slices” from the 3D
model from which to calculate density maps in the same way that it
is done experimentally.

The procedure to “cut” the 3D model into thin slices is as follows.
A 3D block is rotated by an angle θ chosen at random in the x–z plane
with a range in allowed values between 0 and 2π (Fig. 2A). Next, the
block is rotated by the azimuthal angle ϕ chosen at random in the y–z
plane (Fig. 2A)with a range in values between 0 and π/3, where in this
work this particular maximum value for ϕ is taken as a reasonable
approximation for the upper bound instead of themaximumof π/2 that
would provide undesirable tangential cuts of microcolumns. These
Fig. 4. Density maps given by g(x,y) in (A), (C), and (E) and respective cross-sectio
and (E) correspond to steps 0, 3, and 6, respectively. The cross-sections are calculate
indicated in each density map. The y-axis cross-sections go through the middle of
lower right corner of the density maps represent 50 µm.
ranges of values for rotations mimic the experimental setup where
orientation and inclination angles are not fixed at the moment of
acquisition of the thin-slice tissue sections but still correspond to
sections that are approximately orthogonal to the pia surface and hence
not tangential. An example of these rotations is given in Fig. 2Bwhere
it is shown how we select a thin slice (white wire box) from a rotated
block. The “cut” thin slice is seen at an angle in Fig. 2C and from the
side in Fig. 2D.Because of the rotations, the thin slice usually crops the
microcolumns to an unspecified length. This means that the micro-
columns in the model will appear shorter due to oblique cuts, which is
also the case in experiments that measure L (Cruz et al., 2005).

Once the thin slice is obtained (Fig. 2D), all of the z coordinates
are projected to the x–y plane (of the reference system), which does
ns in (B), (D), and (F) at three of the seven steps. The density maps (A), (C),
d by measuring the neuronal density found in a strip along the thin black lines
the density map while the x-axis cross-sections do not. The scale bars at the



Table 2
Values used for the three-dimensional reconstruction

Tissue property or measurement Value

Y, average interneuron distance. 20.0 µm (1) (estimated)
P, average intercolumn distance. 26.1 µm (1)
ρ, slide neuronal density 0.0013 neurons/µm2 (1)
l 341 µm (1)
s, thickness of the thin slice 30 µm (1)
Radius or neurons (average) 5 µm
% interneurons 20% (2)

Model parameter Value

dn, interneuron distance. 23.1 µm
dc, intercolumn distance. 29 µm
h Uniform random [0,2π]
ϕ Uniform random [0,π/3]
% omitted neurons 40%
δdn Gaussian distribution, σ=4.7μm
δxn, δzn Uniform random [−6 µm, 6 µm]
δxc, δzc Uniform random [−6 µm, 6 µm]
N, number of images for average. 500

(1) Cruz et al., 2005; (2) Hendry et al., 1987.
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not alter the x–y coordinates of the neurons. This creates a 2D field
of x–y locations (Fig. 2E) similar to those from thin tissue sections
in which neuron locations are collapsed into the plane of the slide
both by shrinkage in the z-axis and by the optical depth of field
when sections are digitized. We note that because the location and
not the diameter of the neurons enters into the selection of neurons
inside the slide, there is no ambiguity on whether neurons close to
the plane of the cut belong inside or outside of the slide as may
occur in experimental sections.

Density map method

The densitymapmethodwas initially described byBuldyrev et al.
(2000) and a more detailed description and validation was given by
Cruz et al. (2005). Briefly, the density map method calculates the
density correlation function, g(x,y), using as input the (x,y) neuronal
coordinates from an image. This function g(x,y) can be mapped to a
2Dgrayscale image inwhich different shades of gray are proportional
to the average local neuronal density. Thus, the density map repre-
sents the average neuronal neighborhood surrounding every neuron
within an ROI. We quantify the microcolumnar structure by extrac-
ting the following measures (Cruz et al., 2005):

• W, microcolumnar width,
• P, distance between microcolumns,
Table 3
Values for the microcolumnar measures

Shading denotes significant changes from the previous step.
• L, effective length (vertical span) of microcolumns,
• S, strength of microcolumns (ratio of the neuronal density within

a microcolumn to the average neuronal density),
• T, strength of nearest neighbor microcolumns (ratio of the neu-

ronal density of neighboring microcolumns to the average neuro-
nal density; also measures degree of microcolumnar periodicity),

• Y, distance between neurons within a microcolumn (perpendi-
cular to pia and parallel tomicrocolumns—not explicitly defined,
but contained, by Cruz et al., 2005).
Results

In this section, we present an application of the 3D modeling
method by using as input previously calculated densitymaps derived
from images of layer III, area 46, of rhesusmonkey brains (Cruz et al.
2005). This application also serves as a tutorial on how to generate
3D neuronal ensembles from any set of density map measures.

During the process of the specific 3D construction below, we will
refer to Fig. 3 for illustrations of the resulting 3D structures and to
Fig. 4 for their corresponding density maps. In Table 1, we list those
measures that are either constraints or change as a consequence of a
particular step, and in Table 2, we list the experimental values used to
build the model as well as the resulting values of the parameters of
the model that are obtained from the match to the target values. In
Table 3, we list each step (first column) along with its corresponding
measures of microcolumnarity (rows). The target values coming
from experimental results are given in the last row of Table 3 (row
Experiment).

To provide statistics in the comparison between the model and
target, N blocks of model neurons are generated after each step from
which we getNmodel thin slices. We note that since the steps involve
random numbers, no two 3D blocks will have neurons at exactly the
same (x,y,z) coordinates, thus the procedure creates a set of N distinct
blocks. The N blocks are then separated into n groups from which n
average density maps are calculated with corresponding n sets of
measures of microcolumnarity. From these n sets of model measures,
one set of average (plus standard deviation) measures of micro-
columnarity are calculated for the model that is compared with the
corresponding experimental target measures of microcolumnarity.
Because the value of the standard deviations in the measures of
microcolumnarity of the model depends on N and n, which both can
be made arbitrarily big (only bounded by simulation time), the value
of the error in the model is only presented here as a guide and not as a
true comparison with the experimental error bars. In the present work,
we take N=500 and divided this into n=5 groups of 100.

For convenience, we define the building and modification of
neuronal positions up to a given step to obtain N 3D structures, the
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generating phase, and the rotating and cutting of these 3D struc-
tures into thin slices, plus the calculation of their density map along
with the determination of measures of microcolumnarity from this
density map, the processing phase.

Step 0
The size of the block to accommodate the size of our experi-

mental ROI (341×341 µm2) is given by Eq. (3) to be about 484×
484×484 µm3. A block of this size usually contains more than
7000 neurons. As described in Methods, at step 0 an initial crys-
talline lattice is built. The only two parameters necessary to define
this initial lattice are dc and dn. As presented in Methods, the value
of dc is closely related to P. For our specific application of layer III
microcolumns, we use a value for dc of 29 µm (from Cruz et al.,
2005, Fig. 8D). We note that this value is of the same order of
magnitude as values found in the literature for the distance between
dendrite bundles, a natural measure for distances between micro-
columns, in, for example, the mouse primary motor cortex bundles
of layer V apical dendrites measured at the level of layer IV on
average at 31 µm apart (Lev and White, 1997), layer IV of the rat
primary somatosensory cortex on average at 49 µm apart (Skog-
lund et al., 2004), and the monkey visual cortex in layer IVof area
17 at about 30 µm apart (Peters and Sethares, 1991) and between
bundles of myelinated axons in layer IVc (and apical dendrites) at
23 µm apart (Peters and Sethares, 1996). Also, in supragranular
layers of the rat, primary visual cortex bundles were found to be
about 27 µm apart (Vercelli et al., 2004).

For the value of dn, we solve for dn in Eq. (2) and by taking
Y=20 µm (lower bound estimate; Cruz et al., 2005, Fig. 4), we
obtain dn=23.1 µm. An example of an initial lattice is shown in
Figs. 3A and B. After the generating phase up to step 0 and the
processing phase, we obtain the density map shown in Fig. 4A
along with the measures of microcolumnarity plus the average
neuronal density listed in the first row of Table 3 (row 0). It can be
seen by simple inspection that the density map (g(x,y) plotted in
Fig. 4A) has almost no features that resemble the target density
map (Cruz et al., 2005, Fig. 3). The cross-sections along the x- and
y-axis of the model density map (Fig. 4B) show very large and
discrete peaks characteristic of crystalline lattices.
Step 1

In step 1, interneurons are added to the system as described in
Methods. Here, the radius of neurons is taken as 5 µm where this
number is derived from the average size of neurons in our tissue
samples from area 46, layer III (Cruz et al., 2005). Interneurons are
added to the system such that they make a total of 20% of the total
number of neurons in the model system (Hendry et al., 1987).
Carrying out the generating phase up to step 1 with the subsequent
processing phase shows that both S and Twere changed, as shown
in Table 3, step 1. The significant decrease in S and T is due to the
increased average density of neurons in the system because the
random placement of these neurons adds more neurons outside the
microcolumn than within the microcolumn.
Step 2
In step 2, as described inMethods, a percentage of all neurons are

deleted to match the 2D neuronal density of the model system and
the 2D experimentally observed density. For our specific applica-
tion, we need to delete 40% of all neurons. After this reduction, the
percentage of interneurons vs. principal neurons is unchanged but
the model density for 2D slices matches the experimental value
without altering any of the other microcolumnar properties relative
to step 1 (Table 3, step 2). The resulting density map up to step 2 (not
shown) remains very close to the one shown for step 1 in Fig. 4A.

Step 3
In step 3, the randomization of y0 produces a radical change in

the appearance of the system as illustrated in Figs. 3C and D since
neurons across microcolumns no longer coincide at their yn
positions. However, the neurons within microcolumns still form
perfectly spaced vertical columns, as seen in Fig. 3D (dark spheres
are interneurons). After the generating up to step 3 and processing
phases, we obtain the density map shown in Fig. 4C with the
corresponding cross-sections in Fig. 4D. This density map shows
how the periodicity in the y direction is lost and the cross-section in
the x-axis shows the emergence of wider peaks for the nearest
neighbor microcolumns. As shown in Table 3, while step 3
radically changed the 3D structure of the block, it only affected T,
the measure of strength of neighboring microcolumns, by reducing
it as immediately adjacent neurons are on average more dispersed.

Step 4
In step 4, after the generating phase up to step 4 plus the

processing phase, we see that adding δdn in Eq. (5) does not
change the resulting density map (not shown, but similar to
Fig. 4C) but transforms the sharp peaks in the y-axis of Fig. 4D
into the smoother curves of its corresponding cross-sections (not
shown, but with a y-axis similar to that of Fig. 4F) that approximate
the y-axis cross-section found in the experiment (Cruz et al., 2005,
Fig. 4). A value for the width of the Gaussian distribution of δdn of
σ=4.7 μm was enough to match these two curves. As shown in
Table 3, adding δdn did not affect significantly most of the mea-
sures except L and Y, both of which were brought to values closer
to the target. The decrease in L (the vertical span of the micro-
column) comes from its definition as the length scale in an expo-
nential envelope of the peaks in the y-axis cross-section. Smaller
and smoother peaks yield a faster decay of the exponential enve-
lope, thus a smaller L.
Step 5
In step 5, the random displacements of neurons in the x-z plane

by the addition of the random variables δxn and δzn, result in
microcolumns with a non-zero widthW, as shown in Table 3, step 5.
Values for δxn and δzn in the range of±6 μm were enough to match
W from the model to its target of 12.8 µm (from Cruz et al., 2005).
These displacements introduce additional reductions in S and T.
Both of these reductions happen because some neurons are displaced
considerably far from the center of the microcolumns and no longer
contribute to the density map-defined “microcolumn” thus weak-
ening their microcolumnar measures from the previous step.
Step 6
Finally, in step 6, the positions of the base of the microcolumns

are moved in random directions away from the vertices of the
underlying hexagonal lattice. After the generating and processing
phases, we obtain a density map (Fig. 4E) with cross-sections
shown in Fig. 4F. This step broadens and lowers the peaks in the
model cross-section (other than the central peak) along the x-axis
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(Fig. 4F), an effect already present but of less magnitude in step 5,
that match with the experimental curve when δxc and δzc are in
the range of (−6 μm, 6 μm). This step is also essential to bring
additional realism to the model, as seen by comparing Figs. 3D and
F in which the regular patterns of the underlying idealized hexa-
gonal lattice are diminished. By examination of Table 3, step 6
shows that the value of T (strength of neighboring microcolumns)
is the only measure that is significantly affected by this step.

As a result of the transformations described above, a final set of
3D blocks that best approximate the actual microcolumn organi-
zation of neurons from layer III in area 46 is obtained. A step-by-step
illustration of this particular process is summarized in Fig. 5 where
the measures of microcolumnarity are plotted as a function of step
number. The last point in each graph corresponds to the target
values. Significant decreases in S toward its target occur at steps 1
and 5, in which interneurons and planar displacements of neuronal
positions are incorporated, respectively. T is significantly reduced
toward its target at steps 1 (interneurons are added) and 3, in which
the periodicity across microcolumns is reduced smearing the effect
of nearest neighbor columns. W increases significantly as neurons
are displaced in the x–z plane, thus giving width to the columns. The
distance between microcolumns P does not suffer any significant
Fig. 5. Density map measures (A) S, (B) T, (C) width W, (D) intercolumn distance
function of step number. The last disconnected data point in each graph indicates th
the excess neuronal density above the average global neuronal density in the samp
change at any step. This is because the only step that could possibly
affect it, step 6, only broadens and decreases the first peak of the
cross-section in the x-axis (Fig. 4F) but does not change the average
position of the nearest neighbor microcolumns, thus preserving
the value of P. L decreases abruptly at step 4 when the decay in the
density map cross-sections increases, thus truncating L. The value
for Y, the vertical distance between neurons within microcolumns,
does not change appreciably except at step 4 when the distances
between neurons change from being a constant to being values
generated from a distribution. All of these changes along with the
step number at which they occur are listed in Table 1. We note that
the significant changes in the measures at particular steps, shown as
big jumps in Fig. 5, will also appear at the same step number when
using other data from measures of other cortical areas, but the
magnitude of the changes will be dependent on the input data.

Comparing the values of the microcolumnar measures after step
6 with the target values (last two rows of Table 3), we observe that
most of the values derived from the model were less than 8% from
the values of the target except for W and L where intrinsic large
fluctuations in these measures prevented a better fit. However,
even for these two measures, the values from the model were
within the experimental error of the W and L target values.
P, (E) length L, and (F) interneuron distance within a microcolumn Y, as a
e target value derived from experiment. For S and T, we subtract one to plot
les.
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Discussion

Summary

A method is presented that starting from density maps empiri-
cally derived from the two-dimensional x,y coordinates of neurons
from thin sections constructs a set of theoretical three-dimensional
representations of those neurons. The method transforms, by a
series of steps, a 3D crystalline lattice of neurons into a 3D spatial
model configuration that gives microcolumnar measures consistent
with those calculated from thin tissue sections.

Caveats

The main limitation of our model is that it cannot generate
an exact rendering of individual neuron locations given a set of
2D tissue sections since the density maps are statistical proper-
ties of such sections that can only provide average spatial pro-
perties. The model provides instead a set of N 3D structures that
when taken together, have the same statistical properties (density
maps) as those derived from neurons in tissue. Moreover, since the
N 3D structures are statistically equivalent, any of them can be
taken as representative of the biological system used to generate
them.

There are two other important questions that remain concerning
the validity of this model: (i) whether the steps involved in modi-
fying the crystalline lattice produce a statistically “unique” repre-
sentation, and (ii) whether these steps are the only way to achieve
this representation.

First, regarding uniqueness of the 3D model solution, there are
enough experimental constraints provided by the neuronal density
and microcolumnar measures that the 3D microcolumnar arrange-
ment that results from our specified construction and corrections is
the only possible outcome that optimally matches all of the target
experimental properties. Also, the specific sequence of steps
should not influence the final configuration. However, because
here we sequentially apply the steps without returning to previous
steps (in a linear fashion), this may introduce errors since at every
step there are minor changes to all measures (Table 3), although
these changes are not significant. Instead, an algorithm in which
the differences between the measures of microcolumnarity from the
model (tuned by all of the adjustable parameters of the model) and
those from the target are iteratively minimized might provide a
slightly “better fit” between the 3D representation and experiment.
However, this “better fit” would only bring second-order cor-
rections (less than 1%) that would not substantially change the
final parameters presented here while at the same time increasing
significantly the computational effort involved in such a feedback
minimizing algorithm.

Second, our choice of transforming steps is not the only way to
derive an underlying 3D model as they depend (by design) upon
the initial configuration. Thus instead of a perfect 3D lattice as a
starting point, a set of randomly placed neurons (or columns)
could have been used as the initial configuration that is then
moved by a different set of steps to cause coalescence into the
final microcolumnar arrangement that yields the required target
values. However, starting from an ordered lattice that undergoes
specified transformations is more amenable to systematic analysis
and may yield more insight when studying changes to these
transformations relative to observed alterations in development,
aging, and disease.
Potential applications

Our model is relevant to studies that assess the level of orga-
nization of neurons in the cortex over a number of variables or
conditions, such as across species or between different areas of the
cortex, but may be particularly useful in assessing changes across the
life span. Specifically, our model could contribute to questions about
when and howmicrocolumns emerge in development and change up
to adulthood. Likewise, it is applicable to study how microcolumns
change in adulthood as the brain ages (Cruz et al., 2004). For
example, building a 3D model of the neuronal locations and their
changes in the aging brain could help generate testable hypotheses
about the underlying mechanisms and functional consequence for
cortical information processing. Also, this method is relevant to
studies of neurological diseases in that it can provide a unique
perspective into the degree of 3D organization or disorganization in
developmental disorders and in neurodegenerative diseases that
affect the cortex, for example in the cross-correlation between thio-
flavine S-positive plaques and neurons in AD (Urbanc et al., 2002).

On a more practical level, this method offers an alternative to
manually acquiring the 3D positions of cells from serial sections of
3D tissue blocks and entails a much lower cost in labor and a savings
in material by deriving 3D information from the relatively common
Nissl-stained sections available from many collections of brain
samples (e.g. brainmaps.org). This is especially true as massive
amounts of data in the form of x,y coordinates from such tissue can
now be automatically obtained using a recently developed automatic
neuronal recognition method based on a combination of image
segmentation and machine learning (Inglis et al., 2008).

Impact

Ourmethod is not restricted to the values presented here (Table 2),
but is applicable to any set of x,y locations of cells regardless of
acquisition method or staining. Also, this method is general in that it
can be applied to any arrangement of cells with some underlying
vertical organization. The connection with experiments is done via
the density map method to characterize microcolumnarity that itself
only requires the x,y coordinates of cells. However, since the initial
adjusting parameters come fromour densitymaps, othermethods that
generate equivalent average measures could conceivably be used as
starting parameters to generate the 3D model, such as the one pre-
sented by Buxhoeveden et al. (2000a).

The model presented here can also be applied to the construction
of virtual dendrite forests using the L-Neuron and ArborVitae
programs (Ascoli et al., 2001; Ascoli, 2002) or using other models
such as DLA-based diffusive growthmechanisms (Luczak, 2006). In
this role, our model can dictate the initial (x,y,z) of neuron somata
on which to build these networks of dendrites and could include
axonal arborizations (Scorcioni and Ascolia, 2005). These generated
“forests” can then be used in compartmental neuron simulations to
assess the viability of firing and signaling among neurons in the
network, similar to other studies that simulate whole-column
realistic simulations such as the Blue Brain project (Markram, 2006).

Software

The code containing the algorithm described in this work to
generate 3D configurations given the parameters described in this
work is available in the download section of http://polymer.bu.edu/
cruz/micros.

http://polymer.bu.edu/cruz/micros
http://polymer.bu.edu/cruz/micros
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