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ABSTRACT We outline a theoretical treatment that describes fibril formation in dilute protein solutions. For this, we combine a
theory describing self-assembly and conformational transition with a description of the lateral association of linear chains. Our
statistical-mechanical model is able to predict the mean degree of polymerization and the length of the fibrils and their precursors,
as well as the weight fractions of the different aggregated species in solution. We find that there appear to exist two regimes as a
function of concentration, and as a function of the free energies of protein association: one in which low-molecular weight com-
poundsdominate andone inwhich thefibrils do. The transitionbetween these regimescanbequite sharp, andbecomessharper as
more filaments are allowed to associate into a single fibril. The fraction of fibrils consisting of less than the maximum allowed
number of filaments turns out to be negligible, in agreement with experimental studies, where the fibril thickness is found to be
practically monodisperse. In addition, we find that the description of the fibril ends has a large effect on the predicted fibril length.

INTRODUCTION

The self-assembly of naturally occurring, water-soluble pro-

tein molecules into fibrous material (amyloid fibril formation)

and the subsequent precipitation of these fibrils are common

elements in a host of diseases. Prime examples include

Alzheimer’s and Parkinson’s diseases and prion-related

disorders (1–10). Besides the impact that this type of bio-

molecular self-assembly has on issues in disease study and

prevention, the field has recently experienced a surge in

interest from the area of materials science (11–13). This is

because the properties of the assemblies are potentially ad-

justable by changing environmental factors such as pH or

temperature, the range of structures they can form is very

large, and their biological origin may allow their use in living

organisms. To better understand the mechanisms behind the

fibrillogenesis, many experimental (5,10,14–21) and compu-

tational studies (6,8,22,23) have been performed recently.

Amyloidosis is a phenomenon observed in many proteins

under different conditions, seemingly independent of the

exact composition of the protein molecules (1,2,4,16,24).

Hence, it seems plausible that a general mechanism controls

the fibril formation. We therefore propose a general theoret-

ical treatment for this fibrillogenesis, valid for dilute solutions

(i.e., we assume that the fibrils and their precursors do not

interact appreciably with each other). By focusing on the

common features of the fibril formation, we necessarily ne-

glect many of the structural details of specific amyloid fibrils.

These may differ from protein to protein (23). If one wishes to

give a more detailed description of the fibril structure for a

specific protein, however, such details may easily be incor-

porated into the theoretical framework presented here.

Our treatment is not the first theoretical study of protein

fibrillogenesis. Earlier studies include the Oosawa-Kasai

model (25–27) and the more recent model of Nyrkova and

co-workers (11). Our model is a combination and an ex-

tension of these two theories. Specifically, we apply a recent

extension (beyond the all-or-nothing case) of the Oosawa

theory of two-state, linear assembly into filaments (26–29).

We then combine this approach with the description of lateral

assembly of filaments as applied by Nyrkova et al. (11). This

yields a quasi-one-dimensional model that can be resolved

analytically and that gives results that are exact within the

model assumptions.

The remainder of this article is organized as follows. In the

Theory section, we outline our model and present the equa-

tions that describe the fibril formation. We also introduce

three sets of boundary conditions describing the fibril ends,

and go on to show in Results that the choice of boundary

conditions has a potentially large effect on the predicted fibril

properties. In this section, we also discuss our prediction of

the mean fibril length, the fraction of protein molecules

present as monomers, dimers, filaments, and fibrils, and the

fraction of proteins in a b-strand conformation, as a function

of the protein concentration and the free energies of inter-

action.We find that there is a sharp transition between a fibril-

dominated regime at high concentration and a regime

dominated by monomers and small aggregates at low con-

centration. Similar results are obtained as a function of the

various binding free energies. Finally,we give our conclusions

and outlook in the last section, remarking on the applicability

of our model and the steps necessary to present a comparison

between the theory and experimental results.

THEORY

To write down a theory for amyloid fibril formation in dilute solution, we

must take the following general characteristics account. Firstly, it is known
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that the fibrils have a well-defined diameter and that they consist of several

intertwined filaments (4,8,24): for the 42-residue Ab peptide (a protein

linked to Alzheimer’s disease), e.g., the fibrils are believed to be made up of

five or six filaments (3,8,20). Inside the fibrils, protein molecules possess

a b-strand conformation, which allows them to form long intermolecular

b-sheets (known as cross-b-sheets). Secondly, so-called protofibrils and

protofilaments are known to play a role in the amyloidosis. The former

species is defined as a semifibrillar aggregate that plays a role early in the

amyloid fibril formation, whereas the latter is a component of the mature

fibrils, i.e., an amyloid fibril is believed to be composed of several

protofilaments (4,20,24). Finally, it is well established that nucleation is an

important factor in fibrillogenesis (1,4,17,26,30,31). (We assume here that

the formation of protofibrils and protofilaments is a reversible process. This

need not be so for all proteins. The consequences of this are discussed in

Conclusions and Outlook. In classical nucleation and growth, an unstable

intermediate (the nucleus) plays an important role. Our treatment is unsuited

to describe the dynamics of this process, but we can describe the resulting

stable fibrils. This, too, is discussed in Conclusions and Outlook.)

We outline below a model that combines these characteristics, shown in

Fig. 1. Here, blobs represent monomers in a disordered conformation, and

disks represent proteins in a b-strand-type conformation. The disk

representation was chosen for convenience, and is not meant to imply that

these molecules possess a cylindrical symmetry. We regard the monomeric

protein molecules as being in a disordered state, which we need not specify

further. These molecules can associate into dimers and filaments through a

relatively weak and reversible physical interaction. This association may be

due to, for instance, hydrophobic interactions, hydrogen bonding, electro-

static interactions, or a combination of such contributions. We presuppose

that two types of association can exist between protein molecules, one that

has a b-sheet-like character, and one that has a less ordered (non-b)

character. The former type of interaction is required because amyloid fibrils

are known to possess a cross-b-sheet structure, as mentioned above, and we

include the latter type of interaction because it has been speculated that

(partially) disordered aggregates may form for some amyloid-forming

proteins (6,19,21,23). We assume that dimers contain only the latter,

relatively unfavorable, type of association. This ensures that b-type

associations (and the accompanying cross-b-sheets) only form in larger

aggregates. We make this assumption because cross-b-sheets are known to

only become stable if they contain a sufficient number of monomers. In the

larger linear assemblies (the filaments), each monomer-monomer interaction

(except the filament ends, which shall be discussed in some detail below) can

have either a b-type character, if both molecules have a b-strand-type

conformation, or a disordered character, if this is not so.

Completing our description of the aggregated states, we describe the

fibrils (which consist of several laterally associated filaments) as comprising

two parts: the ‘‘body’’, which we assume consists entirely of protein

molecules in a b-strand conformation (based on experimental evidence of

high b-sheet content in the fibrils), and the ‘‘loose ends’’ or ‘‘legs’’ (11),

which make up the ends of the fibrils, and which we treat as comprising

monomers in the disordered, non-b-state. This is discussed in more detail

below, in the Fibrils section. We furthermore assume that the filaments and

fibrils are rigid structures, i.e., that they do not fold back upon themselves.

Note that in our description, filaments directly combine to form a fibril,

without any intermediate steps. For many proteins, this process is somewhat

more complex, as the protofilaments that combine to form the fibril may

themselves consist of several intertwined filaments (24). However, there also

exist proteins for which the fibril formation is believed to conform to our

description (24). With some slight adjustments, our theoretical framework

should be able to describe the more complex case as well.

The overall free energy per unit volume of a solution of self-assembling

material, DF, can be written as (11,33)

DF ¼ +
N

m¼1

rðmÞ½ln rðmÞ � 1� lnQðmÞ�1DFfibr: (1)

Here, DF is given in units of thermal energy, kBT, with kB Boltzmann’s

constant and T the absolute temperature. The same is true for all (free)

energies used throughout this article, unless explicitly noted otherwise. In

Eq. 1, r(m) is the dimensionless number density of (linear) aggregates of

degree of polymerization m, Q(m) is their (canonical) partition function, and

DFfibr is the free-energy term for fibrils, to be detailed below in the Fibrils

section. From Eq. 1, we can calculate the equilibrium size distribution by

setting the functional derivative of the free energy with regards to the

number density r of any species (monomers, dimers, filaments, or fibrils)

equal to zero, while enforcing conservation of mass. It turns out that the

equilibrium size distribution of each species equals its partition function,

multiplied by the exponent of mN, with N the number of protein molecules

that make up the aggregate and m a Lagrange parameter that we interpret as

the (dimensionless) chemical potential of the protein molecules. Now, to

establish the properties of the protein assemblies, we need to first determine

the partition functions for the monomeric, dimeric, filament, and fibril states.

Monomers and dimers

Because monomers are not involved in any associations, we set their

dimensionless Hamiltonian H(1) equal to zero, so that it acts as a reference

level. The partition function of the monomers, Q(1), is then equal to unity.

As mentioned above, we consider the dimers to consist of two disordered

molecules linked by a single interaction, with free energy M. The

Hamiltonian of a dimer is therefore H ¼ M, and its partition function

becomes Q(2) ¼ k [ exp �M. Note that we ignore here any change of the

conformational state that may take place upon association, i.e., the difference

between the conformation of a protein molecule as a free monomer and the

same molecule bound in a dimer. This assumption avoids the introduction of

another free-energy parameter (as we shall discuss below, the problem at

hand already requires four such parameters) and is not too severe, because

the energy that accompanies this conformational transition only shifts the

binding energy by a fixed amount (albeit, strictly speaking, only in the

infinite-chain limit). Additionally, Nyrkova and co-workers show that, at

least for the DN1 protein they study (a protein that shows a similar fibril

formation), the free energy of this conformational transition is significantly

smaller than that of a monomer-monomer interaction (11).

Filaments

To describe the properties of the filaments, we apply a quasi-one-

dimensional two-state model (28). This model, which combines a model

for linear self-assembly (33) with one for a conformational transition

(34), was recently successfully applied in a description of the helical

FIGURE 1 Schematic representation of the aggregated

states. In the first step monomers aggregate into filaments

with a variable b-sheet content (two examples are shown).

These filaments assemble into fibrils in the second step

(two examples of fibrils are shown, one containing six

filaments of equal length and one containing two filaments

of unequal length). Blobs indicate protein molecules in

a non-b-state, whereas disks represent proteins in a

b-conformation.
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self-assembly of disk-shaped molecules (28,35). We introduce two free-

energy parameters, in addition to the free energy for the formation of an

association between two monomers,M, given in the previous paragraph: the

excess free energy if both those monomers are in a b-strand conformation, P
(this measures the difference between the interaction in a cross-b-sheet with

free energy P* ¼ P1M and that in a disordered aggregate with free energy

M), and the free-energy penalty associated with a ‘‘frustrated’’ monomer,

i.e., a protein molecule that is bound to one of its neighbors with a b-type

association, and to the other with a non-b-type association, R (this can also

be seen as the free-energy penalty of an ‘‘interface’’ between a b-sheet

region and a disordered region along the aggregate axis). These free energies

are illustrated in Fig. 2 (also included here is the free energy F, needed to

describe fibril formation. This parameter is described in the next subsection).

Note that the free energy of the conformational transition of a monomer

inside a filament, from a disordered state to a b-strand one, is not explicitly

taken into account here. Doing so would introduce another free-energy

parameter, which only renormalizes the parameters P and R.

We can now write down the dimensionless Hamiltonian Hfil needed to

describe filaments longer than two monomers. It equals (29)

Hfil ¼ �1

2
R +

m�2

i¼1

ðsisi11 � 1Þ1 1

2
P +

m�1

i¼1

ðsi 1 1Þ1Mðm� 1Þ;

(2)

where m gives again the number of protein molecules in the filament, and si
denotes the nature of each association; it has a value of unity if the

interaction is ordered in nature, (i.e., both monomers have a b-strand

conformation) and�1 otherwise. The Hamiltonian Eq. 2 corresponds to that

of the Ising chain, with P corresponding to the magnetic-field strength, si to

the spin value, and R to the spin-spin interaction.

To determine the partition function from the Hamiltonian, we apply the

well-known transfer matrix method (28,29,34,36). This means that we

define a matrix that gives the unnormalized probabilities (Boltzmann

weights) of each type of interaction, given the type of association that

precedes it. The method allows for a relatively easy way to calculate the

partition function via the eigenvalues of this matrix. The transfer matrix

takes the form

M ¼ ann anb

abn abb

� �
: (3)

Here, ann gives the Boltzmann weight of a non-b-association (the

interaction that exists between two proteins that are not both in a b-strand

conformation) that follows a non-b-association, anb gives that of a non-

b-association after a b-association, abn that of a b-association after a non-

b-association, and abb that of a b-association after another b-association. If

we use the non-b bound state as the reference state and insert unity for a non-

b-association, s [ exp �P for a b-interaction, and s1=2 ¼ exp �R for a

monomer that is bound in a non-b way on one side, and in a b-way on the

other, we obtain (28,34,35)

M ¼ 1 s
1=2

ss
1=2

s

� �
: (4)

The partition function of a filament with degree of polymerization m
is now given by

QðmÞ ¼ u �Mm�2 � u1
: (5)

Here, the vectors u and u1 describe the ends of the filaments,

u ¼ un ubð Þ (6)

u1 ¼ u9n
u9b

� �
; (7)

with un the unnormalized probability for the last protein-protein interaction

of the filament to have a non-b-character, u9n the Boltzmann weight for the

first such interaction of the aggregate to be in a non-b-state, and ub and u9b
the same for the b-state. The evaluation of Eq. 5 is simplified if we

diagonalize the transfer matrix, M ¼ T �L � T�1, with L the diagonalized

matrix containing the eigenvalues of M, T the matrix of column eigen-

vectors

T ¼ s
1=2

s
1=2

l1 � 1 l2 � 1

� �
; (8)

and T�1 its inverse (35). The eigenvalues of M equal l1;2 ¼ 1=21
s=26ð1� 2s1s214ssÞ1=2=2, where the 1 symbol gives l1 and the �
symbol l2 (27,33,34).

Now we need to specify the vectors that describe the filament ends. We

can impose one of three sets of boundary conditions (see van Gestel et al.

(29) for a detailed description). In the first, we allow the first and last

interactions of each filament to have a non-b or a b-character. The vectors u
and u1 then become (1 1) and (1 s)1. In the second, we constrain these

associations to be of the non-b-type. This means that we set ub and u9b equal
to zero, so that the vectors become (1 0) and (1 0)1. Similarly, we can fix the

ends to be in a b-type conformation, with vectors (0 1) and (0 s)1.

That the choice of boundary conditions affects the conformational state

and mean length of helical self-assembled chains, has been described in

recent work (29). In this work, we set the first and last monomer of the fila-

ments to be in a non-b-state, an end description that corresponds to setting s1
and sm-1 both equal to �1 in Eq. 2. Our reason for doing so is, as mentioned

above, that this choice enables us to take into account the circumstance that

cross-b-sheets are only stable if they contain a large enough number of

molecules. Employing Eq. 5 to calculate the partition function, we obtain

FIGURE 2 Schematic depiction of the free-energy pa-

rameters applied in our model. M is the (reference)

association energy, P* ¼ P 1 M is the free energy for

the interaction between two monomers in a b-strand

conformation, R is the free-energy penalty on the forma-

tion of an ‘‘interface’’ between an ordered and a disordered

region, and F is the lateral interaction free energy.
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QðmÞ ¼ ðxlm�2

1 1 yl
m�2

2 Þkm�1
: (9)

In Eq. 9, k is again the Boltzmann factor of a disordered-type interaction,

and x and y are prefactors dependent on the boundary conditions; for

the end description we apply, they equal x ¼ ðl1 � sÞ=ðl1 � l2Þ and

y ¼ ðs� l2Þ=ðl1 � l2Þ (29).

Fibrils

To describe the fibrils, we include lateral interactions between the filaments.

This technique is known to provide a good description of the self-assembly

of the 11-residue DN1 polypeptide (11). In addition to the three free-energy

parameters described in the previous subsection, we now require a fourth

parameter, the free energy of a single lateral interaction, F, which describes

the strength of the interfilament associations inside a fibril (see Fig. 2).

The Hamiltonian of a fibril depends on the state of its ends, as does the

form of DFfibr in Eq. 1. In Nyrkova et al (11), the possibility is suggested that

the filaments that make up the fibril need not have the same length, and

hence, the fibril may have some ‘‘loose ends’’ or ‘‘legs’’. In our model, we

can also take these into account, and describe them as linear stretches of

proteins in a non-b conformation (case A). Earlier studies have led to

speculation that amyloid fibrils, may, indeed, have partially unfolded ends.

(4) Alternatively, we can fix the last monomer of the fibrils to be in a

b-strand conformation, effectively defining that the fibrils comprise solely

proteins in a cross-b-sheet conformation (case B). It is also possible to allow

the fibril ends to attain either of these states. In this latter case, which we

shall refer to as case C, we restrict the length of any ‘‘loose ends’’ to a single

monomer, for computational reasons. (We can also define a model in which

the loose ends can have any length from zero to infinity by the application of

a Dirac d-function, which gives a value of unity if the length of a loose end

equals zero, and zero otherwise. However, we expect this to yield similar

results to the model C as defined in the text, and this latter model is likely

easier to resolve analytically.) That this is reasonable follows from the work

of Nyrkova and co-workers, who find that for realistic values of the free-

energy parameters, the mean length of the loose ends becomes less than a

single monomer (11).

The parameter DFfibr, giving the total free energy of fibrils in dilute

solution, (see Eq. 1) equals DFA, DFB, or DFC depending on the boundary

conditions:

DFA ¼ +
N

n1¼1

� � � +
N

n2p¼1

+
p0

p¼2

+
N

m¼2

rðm; p; n1 . . . n2pÞ

3½ln rðm; p; n1 . . . n2pÞ�1�lnQðm; p; n1 . . . n2pÞ� (10)

DFB ¼ +
p0

p¼2

+
N

m¼2

rðm; pÞ½ln rðm; pÞ � 1� lnQðm; pÞ� (11)

DFC ¼ +
1

q1¼0

� � � +
1

q2p¼0

+
p0

p¼2

+
N

m¼2

rðm; p; q1 . . . q2pÞ

3½ln rðm; p; q1 . . . q2pÞ�1�lnQðm; p; q1 . . . q2pÞ�:(12)
Here, m is the number of protein molecules per filament that make up the

fibril ‘‘body’’, p equals the number of filaments that comprise a fibril, with

p0 its upper boundary enforced by the architecture of the fibrils, ni . 0 gives

the number of monomers present in the ‘‘leg’’ numbered i, whereas qi gives

the same, however limited to a value of zero or unity. The Hamiltonians

for the three cases are as follows.

HA ¼ pðm� 1ÞðM1PÞ1mðp� 1ÞF1 2pR1 +
2p

i¼1

niM

(13)

HB ¼ pðm� 1ÞðM1PÞ1mðp� 1ÞF (14)

HC ¼ pðm� 1ÞðM1PÞ1mðp� 1ÞF1 +
2p

i¼1

qiðM1RÞ:

(15)

We obtain the following partition functions from the Hamiltonians Eqs.

13–15 for fixed m, p, and ‘‘loose end’’ length.

QAðm; p; n1 . . . n2pÞ ¼ ðksf Þpm s

ks

� �p

f
�m
k

+
2p

i¼1

ni
(16)

QBðm; pÞ ¼ ðksf ÞpmðksÞ�p
f
�m

(17)

QCðm; p; q1 . . . q2pÞ ¼ ðksf ÞpmðksÞ�p
f
�mðs1=2

kÞ+
2p

i¼1

qi
: (18)

In Eqs. 16–18, f [ exp �F is the Boltzmann factor for lateral binding of

filaments; k gives again the Boltzmann factor for the formation of a non-b

association, and s that of the transition of a non-b-type interaction to a

b-type interaction, whereas s gives the square of the Boltzmann factor for an

interface between a non-b and a b-region along the fibril axis, also as before.

Note that the fibrils we discuss here are actually sheet-like in structure. To

describe proper fibrils, the last filament would have to bind to the first one,

closing the circle and thus forming a cylindrical aggregate. We may naively

include such a final interfilament interaction in an easy way by setting the

lateral-binding term in the Hamiltonians Eqs. 13–15 equal to mpF. This,

however, is an approximation, as it implies that neither the difference in

entropy between a sheet and a cylindrical aggregate, nor elastic energies,

play a role in the ring closure. In the results section, we shall highlight the

differences between the sheet-like and the cylindrical conformations for

large fibrils (p. 2), and show that this approximation is in fact a severe one.

Overall properties

Now that we have established the partition functions, we can calculate the

overall properties of a dilute solution of assembling protein molecules. Let

us first focus on the overall size distribution r, obtained by adding the

number densities of monomers, dimers, filaments, and fibrils. The number

densities of monomers and dimers are equal to rð1Þ ¼ zQð1Þ ¼ z and

rð2Þ ¼ z2Qð2Þ, with Q(1) and Q(2) given in the ‘‘Monomers and dimers’’

section, and with z [ exp m a fugacity. To determine the number density of

filaments, we need to perform a summation of rðmÞ ¼ zmQðmÞ over all

values of m. Because monomers and dimers are treated separately, we sum

from m ¼ 3 to m ¼ N. Similarly, we can determine the total number of

fibrils per unit volume by summing over the relevant values of p, m, ni, and

qi, taking care to include a fugacity term for each of the protein molecules

present in the fibrils. The limits of these summations are the same as those

seen in Eqs. 10–12. This gives for the overall size distribution

r ¼ z1 z
2
k1

xz
3
k
2
l1

1� zkl1

1
yz

3
k
2
l2

1� zkl2

1 +
p0

p¼2

rfibrilsðpÞ; (19)

with the fibrillar terms given by

rAðpÞ ¼ f
�2ðksfzÞ2p s

ks

� �p
kz

1� kz

� �2p

1� ðksfzÞp
f

� ��1

(20)

rBðpÞ ¼ f
�2ðf 2z2ksÞp 1� ðksfzÞp

f

� ��1

(21)

rCðpÞ ¼ f
�2ðf 2z2ksÞp 1� ðksfzÞp

f

� ��1

ð11s
1=2
kzÞ2p: (22)

Here we have not yet evaluated the summation over p (see Eqs. 10–12),

because its upper bound depends on the protein being considered. For Ab1-42
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protein, e.g., as mentioned above, it is known that p0 most likely equals five

or six (3,8,20,31), but other values have been found for different proteins

(1,23). The reason why well-defined fibrils consisting of a fixed number of

filaments are formed is unknown, but believed to be related to the

architecture of the fibrils, most notably to the asymmetry of their building

blocks, and the inherent twist of the filaments.

Next, we calculate the total number of protein molecules per volume unit

in solution. This volume fraction f is given by the product of the number of

protein units in a given assembly and the dimensionless amount of that

particular assembly per unit volume, subsequently summed over all aggre-

gate sizes (28,29,35). It equals

f ¼ z1 2z2k1
xz

3
k
2
l1ð3� 2zkl1Þ
ð1� zkl1Þ2

1
yz

3
k
2
l2ð3� 2zkl2Þ
ð1� zkl2Þ2

1 +
p0

p¼2

ffibrilsðpÞ; (23)

with ffibrils given for the boundary conditions A, B, and C by

fAðpÞ ¼
pðsf 2z2ksÞp
f 2 � f ðksfzÞp

kz

1� kz

� �2p
2

1� kz
1

2� ðksfzÞp=f
1� ðksfzÞp=f

� �
(24)

fBðpÞ ¼ pf �2ðf 2z2ksÞp 2� ðksfzÞp
f

� �
1� ðksfzÞp

f

� ��2

(25)

fCðpÞ ¼
pðf 2z2ksÞp

f
2 � f ðksfzÞpð11s

1=2
kzÞ2p

3
2� ðksfzÞp=f
1� ðksfzÞp=f 1

2s
1=2
kz

ð11s
1=2kzÞ

 !
: (26)

(Note that, in order for the volume fraction f to be finite, the com-

binations of parameters zkl1, zkl2 and (ksfz)p/f must each have a value

smaller than unity.) Now, by dividing the volume fraction of monomers,

f(1)¼ z, by the total volume fraction, we can determine which mass fraction

of proteins is in the monomeric state. We can determine the mass fraction

of the other assemblies in the same way.

Another important quantity we can now determine is the mean degree

of polymerization. It is defined as

ÆNæ[
f

r
: (27)

Complimentary to this overall mean aggregate size, we can find the

mean degree of polymerization of filaments and fibrils by dividing the

total number of protein molecules that make up the aggregates of that

type by the number of those aggregates. Their mean lengths can then be

found by dividing the mean degree of polymerization of the fibrils by the

number of filaments they contain. By extension, this means that the mean

length of the filaments is equal to their degree of polymerization, and is

given by

ÆLæfil ¼ ÆNæfil ¼
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whereas that of the fibrils becomes

ÆLæA ¼ ÆNæAðpÞ
p

¼ 2

1� kz
1

2� ðksfzÞp=f
1� ðksfzÞp=f (29)

ÆLæB ¼ ÆNæBðpÞ
p

¼ 2� ðksfzÞp=f
1� ðksfzÞp=f (30)

ÆLæC ¼ ÆNæCðpÞ
p

¼ 2� ðksfzÞp=f
1� ðksfzÞp=f 1

2s
1=2kz

ð11s
1=2
kzÞ: (31)

Finally, we can use standard statistical-mechanical techniques to deter-

mine the mean fraction of monomers in a b-strand conformation, averaged

over all aggregate sizes and conformations. It is given by (for case A)

Here, the terms for monomers and dimers are omitted, because these

species cannot contain any b-type associations in our model. For case C, the

summations over ni would be replaced by those over qi, running from zero to

unity, whereas for case B the dependence on ni, as well as the corresponding

summations, would be absent. In Eq. 32, u is the fraction of b-type

interactions in a single filament or fibril. For the filaments it is given by

uðmÞ ¼ ðm� 1Þ�1@ lnQðmÞ
@ ln s

¼ ðm� 1Þ�1 s

QðmÞ
@QðmÞ
@s

:

(33)

This can be understood if one realizes that the derivative after the first

equal sign corresponds to the number of times the free energy of a b-type

interaction occurs in the total free energy of the filament. This equals the

number of interactions that have a b-character. The fraction of these

associations is then obtained by division by the total number of interactions,

m � 1.

For a fibril, u depends on the boundary conditions. It can readily be

determined by counting the number of interactions along the fibril axis in the

‘‘body’’ of the fibril (because these are defined to have a b-character), and

dividing this number by the total number of associations, i.e., it equals

pðm� 1Þ=½pðm� 1Þ1+2p

i¼1
ni� for case A, unity for case B, and pðm� 1Þ

=½pðm� 1Þ1+2p

i¼1
qi� for case C.

Even without a numerical analysis of our model, we can already predict

the roles of the free-energy parameters and the way they interact. For the

reference interaction free energy, we know that a high value (a low value

of k) serves to inhibit intermonomer association, causing monomers to

dominate. For high values of k, on the other hand, assembly takes place. We

focus here on the latter, more interesting case, and look at two regimes, one

where the Boltzmann weight of the lateral-binding free energy, f, is very

small, and one where it is not.

In the former regime, a small value of s results in the formation of

monomers, dimers, and non-b-type filaments as the dominant species.

Conversely, large values of s favor the formation of filaments with a high

b-sheet content. The role of the parameter s, connected to the formation of

interfaces between ordered and disordered regions along the chain, now

Æuæ ¼
+
N

m¼3

mrðmÞuðmÞ1 +
N

n1¼1

� � � +
N

n2p¼1

+
p0

p¼2

+
N

m¼2

ðmp1 +
2p

i¼1

niÞrðp;m; n1 . . . n2pÞuðp;m; n1 . . . n2pÞ

f� rð1Þ : (32)
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depends on the boundary conditions. If the boundary conditions prescribe

disordered ends and s is small, or if the boundary conditions prescribe

ordered ends and s is large, the value of s has little effect, as few interfaces

shall form. However, if the boundary conditions prescribe a state that is

unfavorable, given the value of s, then interfaces must form in any long

filaments or fibrils. If such interfaces carry a large free-energy penalty (i.e.,

for small values of s), the aggregates tend to become very long to minimize

the number of interfaces by minimizing the number of filaments (28,29,35).

For high values of s, on the other hand, there is little effect.

For high values of f, we expect the fibrillar state to dominate, especially if

s is also high. The parameters f and s (and k) are coupled, because each

increase in length of the fibrils involves the formation of associations both in

the lateral and in the axial direction of the fibril. The importance of the

parameter s depends again on which boundary conditions we impose. In

cases B and C, we expect its value to play a small role for high values of s; in
case A, however, we again predict a strong increase in the mean fibril length

for small values of s, for the same reasons as those given above for

filaments.

We determine the overall properties of the solution of assembling protein

molecules by solving z from Eq. 23, for given values of s, f, k, p, s, and f,

and subsequently inserting the value of z into Eqs. 19, 27, and 32. Because

Eq. 23 is a higher-order equation in z, however, we obtain several possible

values for z as solutions. As it turns out, in all investigated cases, only one

of the solutions is physically relevant. Because z is defined as being an

exponential, we can immediately discard any solutions below zero, as well

as any imaginary ones. We can test the remaining solutions by inserting

them into the equations and calculating the mean lengths and fractions of

each aggregated state. For all but one solution, this leads to physically

unrealistic values for at least one of these quantities (such as a negative

volume fraction, or an aggregate length below unity). The remaining so-

lution is the one we apply (this turns out, in all cases investigated, to be the

solution with the lowest value, larger than zero). In the next section, we show

our results for different values of the free-energy parameters, for different

boundary conditions, and for fibrils containing different numbers of fila-

ments. We focus on the mean degree of polymerization, the mean fibril

length, and the weight fractions of the various assembled species.

RESULTS

Boundary conditions

As discussed in the previous section, it is necessary in our

model to define a conformation for the ends of the filaments

that comprise the fibril. The effect of a change in the de-

scription of these ends can be seen in Fig. 3, for the casewhere

we only allow fibrils consisting of two filaments. The mean

length of the fibrils is strongly affected by our choice of

boundary condition, a result that was also found for aggre-

gates that form by linear self-assembly with a helical transition

(29). In amyloid fibrils, for the same values of the free-energy

parameters, we observe a much stronger increase in the mean

size for the case where each fibril can only have non-b ends

than for the other two cases. This is due to the presence of

penalized ‘‘interfaces’’ betweenb-regions and non-b-regions
at each of the fibril ends. Because these interfaces are un-

favorable, the system strives to minimize their number by

allowing fewer (and hence longer) aggregates to form. For the

case of thicker fibrils (containing 2–6filaments), the trends are

quite similar (results not shown).

In the following we shall determine the impact of the

various free-energy parameters, and of the overall protein

concentration. First we briefly summarize results of the case

where no fibril formation occurs and only monomers, di-

mers, and filaments are allowed. We then show the case

where the only fibrils allowed are those containing two fila-

ments (p ¼ 2). This allows for faster calculations than the

case where we allow thicker fibrils, and, as we shall show

below, the trends are similar to that case. After this we dis-

cuss the more general case where fibrils of two, three, four,

five, or six filaments are considered (p ¼ 2–6).

The case where no fibrils form

This case corresponds to a description of linear self-assembly

with a conformational transition. Our model to describe this

is identical to a recent model for helical self-assembly, and

hence our results are also identical (with the b-strand state in
this article corresponding to the helical one in earlier works).

A full discussion is beyond the scope of this article, and we

refer to the earlier work (28,29,35). Summarizing, it was

found that the conformational transition can be quite sharp

and that it couples to the mean size of the aggregates,

resulting in a strong increase in their average degree of

polymerization that sets in near the point where the helical

conformation becomes dominant.

The case p 5 2

Let us now examine the case where the only fibrils that are

present consist of two filaments. To study the properties of a

solution of this type, we solve Eq. 23 for fixed p ¼ 2,

removing the summation in this equation. In the following

we focus on the boundary conditions set C (ends are not

FIGURE 3 Mean length of fibrils consisting of two filaments as a function

of concentration, for s[ exp �P ¼ 70, k[ exp �M ¼ 50, s [ exp �2R ¼
0.1, and f [ exp �F ¼ 3, and three boundary conditions, as indicated. Case

A corresponds to a description in which all fibril ends are fixed to be dis-

ordered, case B is that in which they are restricted to a b-strand confor-

mation, and in case C the ends are unrestricted.
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restricted), but we shall highlight significant differences be-

tween the results for different boundary conditions through-

out the section. We choose end description C because we

(and others) speculate that the fibril ends may have a non-b
conformation (4), due to the greater configurational freedom

this would allow for these ends. We eliminate case A (which

restricts the ends to a non-b conformation) because this leads

to extremely large fibril lengths, as seen in Fig. 3. It is, how-

ever, not unthinkable that there exist proteins for which the

boundary condition A is appropriate.

In Fig. 3, we see that the fibrils are very short at low

concentrations, and that they exhibit a strong increase in

length at a critical volume fraction of protein molecules (in

this case, approximately f ¼ 2 3 10�4). (The molar con-

centration can be determined from the volume fraction f by

dividing the volume fraction by the molecular volume of the

protein.) At higher concentrations, the dependence of the

mean fibril length (plotted logarithmically) on the logarithm

of the volume fraction is linear with a slope of one-half,

indicating that, at these concentrations, the mean length of the

fibrils scales with the square root of f. This is the same

dependence that is encountered in self-assembled chains

(33,35). In this figure and all following ones, we have used for

the free-energy parameters values between zero and a few

times the thermal energy. Although we do not know exact

values for the binding energies between proteins, we estimate

that the values we use here are reasonable for monomers that

are bonded through nonpermanent, physical interactions. We

vary these parameters somewhat between figures, to empha-

size the salient features of the fibril formation.

Like the mean size of the fibrils, the composition of the

solution also shows a strong dependence on the protein con-

centration. This is shown in Fig. 4, where we plot the weight

fraction of each aggregated species as a function of the

volume fraction of protein molecules. As mentioned above,

the weight fractions are given by the volume fraction of

protein molecules present in a certain state (e.g., monomeric

or fibrillar), divided by the total volume fraction of protein

molecules, f. So, for instance, the weight fraction of fibrils is
found by dividing Eqs. 26 and 23, for p ¼ 2. The results

show that there is a transition between a regime where

monomers dominate (at low volume fraction), and one where

fibrils dominate, at high volume fraction. (This is true for all

three boundary conditions.) This transition can be quite

sharp, dependent on the values we choose for the free-energy

parameters. The dimers and filaments that are present at low

concentrations, are repressed past the transition point, where

fibrils dominate. Although it is not immediately clear from

this figure, for most of the investigated parameter values,

monomers are actually the most abundant species, even at

high volume fractions. However, because fibrils can become

quite long, the weight fraction of the monomers tends to

become negligible when fibrils emerge.

The dependence of theweight fractions onf, seen in Fig. 4,
is reproduced almost exactly in their dependence on the

(reference) free energy of a monomer-monomer interaction

M, albeit mirrored, as shown in the inset to Fig. 4. This implies

that, in the context of ourmodel, the same change in properties

may be achieved by a change in the concentration or by a

change in the solvent conditions leading to a shift in M.

The mean fraction of material in a b-strand conformation

(not shown) is predictably small at low volume fractions

(because monomers and dimers, which are defined as dis-

ordered, dominate here) and undergoes a sharp transition at

the critical concentration to reach values close to unity,

following the curve for the weight fraction of fibrils almost

exactly (as would be expected for boundary conditions B,

where fibrils contain no disordered interactions). This indi-

cates that any disordered ends in the fibrillar state play a small

role, either due to the large fibril length or to the circumstance

that their presence requires an unfavorable interface to be

formed. For values of the free-energy parameters that allow

the filament state to play a more prominent role (such as

unfavorable values of F) the curve may deviate from the fibril

fraction curve, but we still expect a rather sharp transition, the

sharper the larger R (28,29,34,35).

The effect of a change in the excess b-association energy,

P, can be seen in Fig. 5. Here, too, there are two regimes, one

in which fibrils dominate and one in which this is not so. For

the same values of the free-energy parameters R and F and

the concentration as in the inset to Fig. 4, we find that a

decrease of 5 kBT in P suffices to go from a weight fraction of

fibrils of approximately zero to one of almost unity. The

same is observed in the inset to Fig. 4, for the reference as-

sociation free energy,M. In fact, the main difference between

the insets to Figs. 4 and 5 is the composition of the solution

at high values of the free energy. In Fig. 4, monomers

dominate, whereas here, there is a significant (and constant)

FIGURE 4 Weight fraction of monomers, dimers, filaments, and fibrils

(containing two filaments) in solution, as indicated, as a function of con-

centration, for s ¼ 10, k ¼ 250, s ¼ 0.1, and f ¼ 2. (Inset) Same as Fig. 4,

but as a function of reference association free energy M, at volume

fraction f ¼ 10�3.
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fraction of filaments and dimers present, even at P ¼ 0. This

is because, in our model, dimers are defined as disordered

(and hence, their fraction is unaffected by the value of P, but
affected by that of the reference association free energy M),

and filaments are also likely in a non-b conformation, unless

the ‘‘frustrated monomer’’ free energy R is small. This

means that the fractions of dimers and disordered filaments

do not directly depend on the value of P, whereas they must

go to zero for high values of M.

The effect of P on the length of the fibrils, as well as on the

overall mean aggregate size (Eq. 27) is shown in the inset to

Fig. 5. Here, again, we see the presence of a critical value,

above which the increase of the mean aggregate size is slow,

and below which the curves are linear. This time the slope of

the linear portion of the fibril-length curve equals unity, rather

than one-half as was the case with the concentration de-

pendence. We also find that the (free) filaments stay short,

regardless of the value of P (not shown). For the cases A and

B the trends are the same as in case C, although for case A,

the fibril length is much larger than for cases B and Cwhereas

the weight fraction remains the same; see also Fig. 3.

The value of the interface penalty R has no effect on the

mean size and solution composition for cases B and C. This

is not so for case A, which shows a great increase of the fibril

length with increasing R (results not shown). Because in

cases B and C the presence of interfaces within the fibrils is

either impossible or unlikely for the values of the other

energetic parameters used here, the free-energy penalty is not

often invoked, and hence has little to no effect. For case A,

which is defined as having an interface at every filament end

within the fibril, an unfavorable (i.e., large) value of R causes

the number of fibrils to decrease, which in turn causes a

strong increase in their length. The value of R is known to

have a strong effect on the length and conformational state

of the filaments as well, and hence we can expect to see the

influence of a change in R, even in cases B and C, under

circumstances where the filament state dominates (28,34,35).

That the effect of a change in the lateral interfilament

binding free energy, F, can be quite drastic (see Fig. 6) is not
surprising, given that the linking of two filaments involves a

free energy equal to mF with m the length of the filaments. A

small change in F then leads to a large change in this free

energy. Hence, the system displays a preference for long

fibrils for F , 0, expressed by a strong increase of the

fibrillization. Nevertheless, we see that the change from a

regime where there are hardly any fibrils to one where their

weight fraction is almost unity, again requires a change in the

relevant free-energy parameter of ;5 kBT. Filaments, which

are the dominant species for high values of F for this set of

free-energy parameters, show a very rapid decline as fibrils

become dominant. This decrease is also evident in the mean

length of the filaments, as shown in the inset to Fig. 6.

Contrary to the concentration and the free-energy parameters

P and M, the value of F has a relatively modest effect on the

mean fibril length in the fibril-rich regime. This is likely due

to the circumstance that elongation of (the body of) a fibril

requires that at least two monomers become attached to it.

This implies an increase of the free energy of F1 2P1 2M.

Hence, the effect of a change in F on the length of the fibrils

is smaller than those ofM and P. The overall mean degree of

polymerization, in any case, still shows the same trend as

before, a very slow increase, followed by a sudden increase,

and a linear dependence of the logarithm of the mean

aggregate size on F. The dependence on F follows the same

trends for boundary conditions A and B (not shown).

FIGURE 5 Weight fraction of monomers, dimers, filaments, and fibrils

(containing two filaments) in solution, as indicated, as a function of excess

b-association energy P, for volume fraction f¼ 10�3, k¼ 250, s¼ 0.1, and

f ¼ 2. (Inset) Mean length of fibrils consisting of two filaments as a function

of excess b-association energy P, for the same parameter values as in Fig. 5.

FIGURE 6 Weight fraction of monomers, dimers, filaments, and fibrils

(containing two filaments) in solution, as indicated, as a function of lateral

association free energy F, for volume fraction f ¼ 10�3, k ¼ 250, s ¼ 0.1,

and s ¼ 10. (Inset) Mean length of fibrils consisting of two filaments as a

function of lateral association free energy F, for the same parameter values

as in Fig. 6.
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The case p 5 2–6

Let us now generalize our description of fibrils somewhat,

and allow fibrils that consist of two, three, four, five, and six

filaments to form. For this, we set p0 ¼ 6 in Eqs. 19, 23, and

32. When we compare this to the case where only p ¼ 2 is

allowed (see Fig. 7), we see that the sixfold fibrils tend to be

much longer than those in the earlier model, but that the

trends are the same. The same applies to the mean degree of

polymerization. It must be noted, however, that the slopes in

the fibril-dominated regime are not all the same. The slope of

the curve describing ÆNæ changes from a value of 4/5 in the

case p ¼ 2 to a value of unity for the case p ¼ 2–6. This

increased dependence of the mean aggregation number on

the concentration must be due to lateral-association effects,

because the length of the chains does not show a similar

increase; the slopes for the mean length of the thickest fibril

allowed both equal one-half.

Focusing on the dependence of the mean fibril length on

the protein volume fraction, we notice that, although there is

a sizeable increase in the mean fibril length for those fibrils

that consist of six filaments, a similar increase is not seen for

fibrils consisting of less than six filaments (the largest

increase is seen for p ¼ 5, and even this is almost negligible;

see Fig. 8). This corresponds to what is found experimen-

tally, where fibrils are known to have a well-defined, prac-

tically monodisperse, diameter (3). The small size of thinner

fibrils is likely caused by the circumstance that a sixfold fibril

contains m more interfilament contacts than a fivefold one,

and hence benefits more from a favorable value of F. Be-
cause this is so for any value of p in our model, we may

expect that the thickest allowed fibril shall always dominate

over thinner fibrils for favorable values of F. This does not

correspond to the observation of an optimum fibril thickness

in experimental studies. To quantitatively take this into ac-

count, we have to include more detailed structural infor-

mation in our model (see also below). A study to this effect is

currently in progress.

Let us now examine the weight fraction of the aggregated

states as a function of protein volume fraction and M. Again

the two plots (Fig. 9 and its inset) look identical, albeit mir-

rored, and again we see that there are two regimes, one where

fibrils dominate and one where they do not. (The fractions of

dimers, filaments, and fibrils with p, 6 are indistinguishable

from zero in the plot and hence are omitted.) The transition is,

FIGURE 7 Mean length of fibrils and mean degree of polymerization

as a function of the volume fraction of protein molecules, for s ¼ 15, k ¼ 8,

s ¼ 0.01, and f ¼ 45, and for fibrils consisting of two filaments, and of two

to six filaments, as indicated.

FIGURE 8 Mean length of fibrils consisting of five and six filaments and

overall mean degree of polymerization as a function of the protein volume

fraction, for s ¼ 15, k ¼ 8, s ¼ 0.01, and f ¼ 45.

FIGURE 9 Weight fraction of monomers and fibrils (containing two to

six filaments) in solution, as indicated, as a function of protein volume

fraction, for s ¼ 15, k ¼ 8, s ¼ 0.01, and f ¼ 45. (Inset) Same as Fig. 9,

but as a function of association free energy M, at volume fraction

f ¼ 10�3.
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however, far less gradual than was the case for p¼ 2, and the

change in the slope of the curve is very sudden. This is

probably due to the cooperativity in the fibril formation,

which is stronger for p¼ 6 than it is for p¼ 2, because many

more lateral associations are formed in the former case.

Similar sharp transitions were observed by Nyrkova and co-

workers in their model (11). This is not surprising because our

description of the fibrils and theirs closely resemble each

other. (Due to the different definitions of the free-energy

parameters, a direct comparison of the model of Nyrkova

et al. (11) and our model is not possible. We may, however,

note that the trends, especially in the fibril-dominated regime,

of our model and theirs, are similar.)

Contrary to our model, Nyrkova’s model presupposes a

b-sheet structure for all assemblies, with the exception of the

monomers. Note that in the limit where the (ordered) fibrils

dominate, the fraction of any disordered assemblies is likely

very small; the Nyrkova model may provide a very good

description when this is the case. Therefore, it may be used

pragmatically even in cases where disordered aggregates are

known to form. The circumstance that the Nyrkova model

essentially uses three parameters, rather than our four, makes

it a very attractive model in this regard. Nonetheless, there

most likely exist fibril-forming proteins that require disor-

dered protein aggregates to be taken into account explicitly.

Indeed, several studies have indicated that (partially) disor-

dered protein molecules may play an important role in the

fibrillogenesis (4,6,19,21,23).

As already advertised in the Theory section, we now study

what the effect of the introduction of an extra parameter f is.
This extra parameter would serve to close the cylinder, so that

our description corresponds to a fibrillar state, rather than a

sheet-like one. We treat the fibrils with p ¼ 2 as having m
lateral interactions, whereas for the larger fibrils we include an

extra contact to form the cylindrical fibril. This relatively

small change causes a great shift in the size distribution, as the

fibrils consisting of three filaments now dominate at high

concentrations, both in terms of length and of weight fraction.

This shift deserves further study. We speculate that the free

energy for ring closure must be unequal to F for systems

where thick fibrils are known to dominate, as we argued

above. To take the ring closure effect into account in a proper

way, it may be necessary to include a p-dependent elastic term
in our description of the fibril formation, and to explicitly take

into account factors like the architecture of the filaments

inside the fibrils, their distribution of hydrophilic and

hydrophobic groups, and their helical twist. Some of these

effects have been taken into account in Nyrkova et al. (11,40).

This shall be explored in a separate publication, in which we

compare theory and experiment.

CONCLUSIONS AND OUTLOOK

We have outlined a theoretical treatment for self-assembly

with a conformational transition, coupled to the lateral

association of chains. Our theory, which is analytical and

exact within the model assumptions, mimics the general

properties of amyloid fibril formation, in a more detailed

manner than has been attempted before. It predicts the mean

length of fibrils and the fractions of each aggregated species

in dilute solution, as well as the fraction of protein molecules

in a b-strand conformation. We find two regimes as a func-

tion of concentration and of the free energies of the various

types of association: one where fibrils dominate and one

where low-molecular-weight species do. The transition be-

tween these regimes can be quite sharp because the fibril

formation may be highly cooperative. We find that the

formation of thick fibrils is favored, and that the fraction

of fibrils consisting of fewer than the maximum allowed

number of filaments is negligible. The mean fibril length

increases slowly at low protein volume fraction, then dis-

plays a strong and sharp increase at a critical volume frac-

tion, and then shows a (weaker) exponential increase at

higher volume fractions. Similar trends are observed for the

mean fibril length as a function of the various association

free energies. Finally, we find that our description of the

fibril ends can have a large effect on the properties of the

aggregates. This effect of boundary conditions seems to

indicate that if we can affect the state of the fibril ends, it may

prove possible to inhibit the fibril formation.

Our theory is potentially useful in describing the aggre-

gation behavior of any protein that self-assembles into

fibrillar structures. Systems that form amyloid fibrils in a way

that resembles that of Fig. 1 include certain prion proteins,

amyloid b-protein, b-lactoglobulin, t-protein, insulin,

b-microglobulin, a-synuclein, hen egg white lysozyme, and

light-chain immunoglobulin. Our model may therefore be

useful in their description (4,24,41–46). Although we have

focused in the above on amyloidosis, we speculate that the

different aggregated states of actin and tubulin (in the pres-

ence of abundant GTP) are also reminiscent of those we out-

line in Fig. 1 (26,27,47,48). In both cases, two conformations

are possible (in the case of actin, nonhelical and helical,

and in the case of tubulin the so-called straight conformation

and the bent one), and in both cases it seems that fibrils can

be thought to consist of several laterally associated linear

chains.

Note that in the description outlined in the Theory section,

we assume that all the steps of the protein fibril formation are

reversible. Although this is certainly so for certain proteins, it

need not be true for others. Indeed, it is believed that

transient species, i.e., thermodynamically unstable aggre-

gates that are rapidly and irreversibly converted into other

species, may play a role of some importance in amyloid fibril

formation. An example of this type of aggregate is the

nucleus that forms and then grows into (the beginnings of) a

fibril. Our theory, being statistical-mechanical in origin,

cannot in principle describe truly irreversible processes; to

provide an accurate description of transient species, a kinetic

model is required. Note, however, that by choosing proper
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values for the free-energy parameters, it is possible to shift

the equilibrium between two states to such a degree that the

less favorable state becomes negligibly populated.

Because the identity of the nucleus (its size and conforma-

tion) and any other unstable speciesmay differ from protein to

protein, we have not taken these into account in our general

treatment. If one wishes to apply our statistical-mechanical

treatment to an experimental system in which aggregates that

disappear from the solution in a truly irreversible fashion play

a role, one needs to carefully distinguish between the stable

states and the transient ones, and only take the former into

account. This ensures that the concentration of any unstable

intermediate equals zero in equilibrium, whereas stable struc-

tures are taken into account in a proper way.

To conclusively determine which systems can be described

by the theory as outlined in this article, a detailed comparison

between experiment and theory must be performed. This is

currently in progress, and shall be discussed in a separate

publication. Although the majority of experimental data on

amyloid fibril formation is kinetic in nature (i.e., measured

as a function of time) there have been some studies of the

(equilibrium) fibril length and fibril fraction as a function

of concentration (14,17,19). The former type of informa-

tion may be found from radiation scattering experiments

(9,14,17,19,31), whereas the latter type can be obtained by

chromatography and sedimentation studies (17,31). There

have also been numerous studies that determine the b-sheet
content by measuring the fluorescence of the fibrils after

thioflavin-T or Congo red binding (18,30), but these tech-

niques seem to bemore qualitative than quantitative in nature,

as the binding between the dye and the amyloid fibril is still

not completely understood. Alternative methods for measur-

ing the fraction of protein in any one conformation may also

prove useful in comparing theory and experiment; here one

can think of, e.g., circular dichroism spectroscopy (9,10). In

addition to concentration dependence, we may look at the

temperature dependence of the fibril formation. Although a

recent article indicates that this effect is quite small (at large

timescales, when the solution has had time to equilibrate) for

Ab peptide (15), this need not be the case for other proteins.
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