Supplemental Material

Crystal Structure of the Amyloid-β p3 Fragment Provides a Model for Oligomer Formation in Alzheimer's Disease

Victor A. Streltsov¹, **Joseph N. Varghese¹**, **Colin L. Masters²**, **Stewart D. Nuttall¹** ¹CSIRO Materials Science and Engineering, and Preventative Health Flagship, 343 Royal Parade, Parkville, VIC 3052, Australia. ²Mental Health Research Institute, The University of Melbourne, Parkville, VIC 3010, Australia.

Supplementary Figures

Fig. S1. Construction and crystallization of A β -IgNAR chimeric proteins. (*A*) A β residues Leu17-Ala42 or Val18–Ile41 were engineered into the IgNAR CDR3 loop region, connected by variable length glycine linkers to promote rotational freedom. For A β -IgNAR-G1, the Ala42Gly substitution was required for re-alignment with the IgNAR G-strand. (*B*) Sequence of A β -IgNAR-G1 including dual C-terminal octapeptide FLAG purification tags and alanine linker regions (shown in lower case). The A β component is boxed and bolded. (*C*) Western blot analysis (reducing conditions) reveals the presence of dimeric species (arrowed at ~30 kDa) for A β -IgNAR-G1 (lane 2), A β -IgNAR-G3 (lane 3), and A β -IgNAR-G6 (lane 4), in contrast to the parental 12Y-2 IgNAR (lane 1). Molecular weight markers (kDa) are indicated on the left. (*D*) Affinity purified A β -IgNAR-G1 elutes as a dimer by gel filtration (solid line) in comparison to 12Y-2 IgNAR monomer (dotted line). (*E*) SDS-PAGE of affinity-purified A β -IgNAR-G1 under reducing (R) and non-reducing (U) conditions, illustrating formation of tetrameric (arrowed) species in the absence of heating/reducing agent.

Fig. S2. (*A*) A β -IgNAR overlay of chains A-D shows minimal perturbation of the underlying scaffold. Chain are coloured as in Fig. 1*B*. (*B*) Chimeric protein consisting of *Tk*-RNase HII(1-197) (in blue) with C-terminally fused A β_{28-42} (in red) (PDB:1X1P) (Takano et al., 2006). (*C*) A β_{28-42} fragment from (*B*) (in pink) is overlaid with the corresponding residues for A β -IgNAR-G1 (in yellow) with a r.m.s.d. = 1.9 Å for 13 atoms.

Fig. S3. Mutations that reduce aggregation of the Alzheimer's $A\beta_{1-42}$ peptide (Wurth et al., 2002). (*A*) Mutant Leu34Pro results in a decrease in A β -IgNAR-G1 dimerization (arrowed) and reversion to monomeric form. Western blot analysis (reducing conditions) for 12Y-2 IgNAR (lane 1), A β -IgNAR-G1 (lane 2), A β -IgNAR-G1-Leu34Pro (lane 3). Molecular weight markers (kDa) are indicated on the left. (*B*) SDS-PAGE of affinity-purified A β -IgNAR-G1 Leu34Pro under reducing R and non-reducing U conditions, illustrating dissociation to monomeric form. Molecular weight markers (kDa) are indicated on the left. (*C*) Phe19 is important for stabilizing the dimer and it is recognized as affecting the folding and assembly of A β by mutations Phe19Ser, Phe19Thr, or Phe19Val (Wurth et al., 2002).

Fig. S4. Construction of the A β oligomer model based on the tetramer structure from A β -IgNAR with the C-teminal β -sheets aligned to the NMR fibril model (Petkova et al., 2006). (*A*) NMR structure with fragments (AA 33-36) coloured in red are used to align A β tetramers. (*B*) Combination of EXAFS structure of A β_{1-16} -Cu(II) (Streltsov et al., 2008) with crystal structure of A β_{18-41} tetramer. The A β_{18-41} tetramer chains are coloured as in Fig. 1*B*. The N-terminal fragments A β_{1-17} are in green. Black spheres represent transitional metals (Cu, Zn, Fe).

Fig. S5. Similarities between (*A*) $A\beta_{18-41}$ dimer formed by the chains A and D and structures of anti-microbial peptides: (*B*) Crystal structure of human neutrophil alpha-defensin 2 (HNP2) dimer (PDB ID: 1ZMI); (*C*) Solution structure of horseshoe crab antimicrobial peptide tachystatin B (PDB ID :2DCV); (*D*) Solution structure of cryptdin-4, the most potent α -defensin from mouse (PDB ID:1TV0).

Fig. S6. Stereo image of the $2F_0$ - F_c electron density for A β_{18-41} fragment (chain A) in A β -IgNAR. The map is contoured at 1.0 σ .

Supplementary Tables

Designation	Designed Use	Orientation	Oligonucleotide Sequence (5'- 3')		
8408	5' Amplification; <i>Sfi</i> I site	\rightarrow	GTCTCGCGGCCCAGCCGGCCATGGCCGCATGGGTAGACCAAACACC		
8404	3' Amplification; <i>Not</i> I site	4	CACGTTATCTGCGGCCGCTTTCACGGTTAATGCGGTGCCAGCTCC		
IgNAR/Aβ_1_1	Internal build Aβ into CDR3 loop	←	CCATCAGGCCAATGATCGCACCTTTGTTGCTGCCAACATCTTCCGCAAAGAACACATAGAAT GCTTGACACTTATACGTGC		
IgNAR/Aβ_1_2	Internal build Aβ into CDR3 loop	←	TTTCACGGTTAATGCGGTGCCAGCTCCTTTCTCACCGCCAATCACAACGCCACCCAC		
IgNAR/Aβ_2_1	Internal build Aβ into CDR3 loop	←	CCATCAGGCCAATGATCGCACCTTTGTTGCTGCCAACATCTTCCGCAAAGAACACCAGACCG CCACCATAGAATGCTTGACACTTATACGTGC		
IgNAR/Aβ_2_2	Internal build Aβ into CDR3 loop	←	AATCTGCGGCCGCTTTCACGGTTAATGCGGTGCCAGCTCCTTTCTCACCGCCTCCACCCGCAA TCACAACGCCACCACCATCAGGCCAATGATCGCACC		
IgNAR/Aβ_3_1	Internal build Aβ into CDR3 loop	←	CCATCAGGCCAATGATCGCACCTTTGTTGCTGCCAACATCTTCCGCAAAGAACACCAGGCCA TAGAATGCTTGACACTTATACGTGC		
IgNAR/Aβ_3_2	Internal build Aβ into CDR3 loop	←	AATCTGCGGCCGCTTTCACGGTTAATGCGGTGCCAGCTCCTTTCTCACCGCCACCCGCAATC CAACGCCACCATCAGGCCAATGATCGCACC		
IgNAR/Aβ-Wth1	Leu ³⁴ Pro mutation in Aβ-IgNAR-G1	←	AATCTGCGGCCGCTTTCACGGTTAATGCGGTGCCAGCTCCTTTCTCACCGCCAATCACAACGC CACCCACCATCGGGCCAATGATCGCACC		

Table S1. Oligonucleotides primers used to generate $A\beta$ -IgNAR constructs.

Chain	А	В	С	D	Total ^b
А	-	215.7 0.590 ^c	589.0 <i>0.709</i>	290.8 0.786	1095.5
В		-	254.9 0.742	563.8 0.567	1034.4
С			-	215.8 0.717	1044.2
D				-	1087.6
Average					1065.4

Table S2. Aβ-IgNAR-G1 buried surface areas and shape complementarity statistics^a.

^aFor A β regions only. ^bArea excluded on first molecule due to interaction with second (in Å²) calculated using point density of 10 points/Å². ^cComplementarity statistics (in itialics) calculated using the Sc program(Lawrence and Colman, 1993). Probe sphere radius = 1.7 Å.

Supplementary References

- Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946-950.
- Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer's β-amyloid fibrils. Biochemistry 45:498-512.
- Streltsov V, Titmuss S, Epa V, Barnham K, Masters C, Varghese J (2008) The structure of the amyloid-β peptide high-affinity copper II binding site in Alzheimer disease. Biophys J 95:3447-3456.
- Takano K, Endo S, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S (2006) Structure of amyloid-β fragments in aqueous environments. FEBS J 273:150-158.
- Wurth C, Guimard NK, Hecht MH (2002) Mutations that reduce aggregation of the Alzheimer's Aβ42 peptide: an unbiased search for the sequence determinants of Aβ amyloidogenesis. J Mol Biol 319:1279-1290.