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ABSTRACT: In this paper we introduce the idea of the implicit
crowding method to study the statistical mechanical behaviors
of folding of [3-sheet peptides. Using a simple bead-lattice
model, we are able to consider, separately, the conformational
entropy involving the bond angles along the backbone and the
orientational entropy associated with the dihedral angles. We
use a Ising-like model to partially account for the dihedral angle
entropy and, implicitly, the hydrogen-bond formations. We also
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compare our results to recent experiments and find good quantitative agreement on the predicted folded fraction. On the basis of the
predictions from the scaled particle theory, we investigate changes in the melting temperature of the protein, suggesting crowding
enhanced stability for a variant of trpzip hairpin and a slight instability for the larger 3-sheet designed proteins.

I. INTRODUCTION AND MOTIVATION

The idealization of dilute conditions in conventional in vitro
biophysical experiments has long been recognized to ignore the
important aspect of crowding. In typical cellular environments,
the experimental, computational, and theoretical results have
shown crowding agents to affect the stability of proteins and the
rates of protein folding. The measured and predicted effects of
crowding, however, are varied and seem to be dependent on both
the protein and the crowders themselves. For a summary of the
recent developments in the field since 2004; see the excellent
review by Zhou, Rivas, and Minton." Crowding effects are still
actively being explored, with most efforts focusing on the entro-
pic effects to elucidate the response common to all crowding
agents. While energetic interactions may exist between the
protein and the crowding agents, a simplified yet effective treat-
ment of a crowder is that of a steric, inert particle, affecting the
entropy of the protein’s conformational state according to its
compactness and shape.”?

In one limit, where the crowding particles are much larger in
volume and mass than the protein, good results have been
obtained by approximating the crowders through localization.
Typically, this is modeled as confinement between parallel plates,
or in spherical or cylindrical cavities.*© In these approximations,
the conformations that are extended beyond the confinement
wall are excluded. In the other limit, where the crowders appro-
ach the size of a typical residue, the effects of excluded volume
dominate. Here, not only are the extended conformal states of
the protein highly perturbed but also intermediate states are
proportionally less favored to those states that are compact.”

In this article, we investigate the effects of crowders on the
folding properties of f3-sheet proteins using a lattice model.
While lattice-based approaches are numerous, those that connect
their results to physical experiments are less so. We are motivated
by the experiments done by Gai and co-workers® ™' and examine
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our model in light of their observations. We recognize, however,
that simple lattice-bead models capture only a portion of the
conformational entropy; typically only the gross features of the
backbone are correctly modeled. To accommodate for the orien-
tial entropy of the dihedral or ¢—1) angles, we introduce an Ising-
like model. Each bead along the chain is associated with a binary
internal state, with an interaction potential requiring the ener-
getic contributions of two beads to have the same state. Since the
correct configuration of the dihedral angles is essential for proper
hydrogen-bond formations, this extra degree of freedom gives a
physically motivated Hamiltonian that implicitly includes the
hydrogen-bond contacts. We model the positional entropy of the
backbone by projecting it onto a face-centered cubic (fcc) lattice.
We use a Go-like Hamiltonian to model the native connections
and to ensure the existence of a unique ground state. With the
conformational entropy defined we propose a model that attem-
pts to capture the salient aspects of macro-molecular crowding
using a detailed density of states (DOS) calculation.

Once the DOS has been determined, we use the results of the
scaled particle theory (SPT) to approximate the effects of
crowding on several 3-sheet proteins. The use of the SPT to
study the conformational states of the protein folding process is,
of course, not new and has been studied previously; see refs
11— 14 and the references cited therein. We model the protein as
a right circular cylinder since the native state of S-sheets are
naturally disk-like. The crowders, Ficoll 70, are modeled as
spherocylinders accounting for their observed elongation.">'®
Our treatment is unique among the previous studies in that we
use the Wang—Landau algorithm to determine density of states
for the positional and orientational entropies, separately. This
gives us an accurate measurement of the crowding effects across
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the conformations of the density of states and the ability to
compute thermodynamic quantities to high accuracy.

The organization of the article is as follows. In section II we
introduce the Hamiltonian and the effective free energies asso-
ciated with crowding and the dihedral angles. In this section, we
explicitly define the cost, both enthalpically and entropically for
each conformation. We demonstrate how the density of states
can be factored into two terms, greatly speeding up the calcula-
tion using the Wang—Landau algorithm. We then describe the
experimental results in section III and fit our model to the
experimental observations. We use the SPT to determine the
effect of crowders on the thermodynamic quantities and discuss
the implications. Finally, we use the results to make predictions
for future experiments.

Il. METHODS

Our protein is coarse grained to a chain of beads and projected
as a self-avoiding walk onto a fcc lattice, with a “bead” represent-
ing an amino acid residue. The fcc lattice was chosen over the tradi-
tional cubic lattice to provide more degrees of freedom. Previous
works have found the fcc lattice to be a more natural fit to the
secondary structures of 0t-helices and SB-sheets.'”*® The choice of
lattice is not arbitrary, as higher coordination numbers and different
symmetries may better represent the underlying structure. For a
summary on the effect of lattice choice see Pierri et al."

Two beads are considered nearest-neighbors if they are on
adjacent sites on the lattice. With the underlying lattice being
defined by a set of primitive vectors e, we define two lattice points
X;, X; to be nearest neighbors if there exists a vector v € e such that
x; =X; + v. For convenience, we define the twelve lattice steps in
Cartesian coordinate space (x, y, z) that form the base set of a
face-centered cubic lattice

111100 O O—-1 —-1—-1 -1
e=1]({1—-1 0 0 1 1—-1-1 O 0o 1 -1
o0 1-1 1-1 1—-1 1 —1 O 0

These twelve vectors define the nearest-neighbors for a given
lattice point. Here [ = 3.8 A is the length scale of the lattice, which
is the average spacing between two C, atoms. Let the set of all
backbone conformations be denoted by ¢’ with the vectorc € &
representing an individual conformation on the lattice.

Our model Hamiltonian is a modification of the Go model,*
where the only energetic contributions are either from the attrac-
tion of the residues that are predefined native contacts or from
the repulsion of the nonnative ones. The Go model, primarily a
model of minimal frustration, typically ignores the potential from
non-native contacts. Models with the repulsive terms added*"**
create a frustrated energy landscape since more structural
information is encoded in the Hamiltonian. In addition, the high
coordination number of the fcc lattice does not always admit a
unique native state for some structures without the nonnative
term. We let G be a symmetric matrix of native contacts, G;; = 1 if
positions i and j are native contacts of the protein, otherwise G;; = 0.

In addition to the Go-like native contacts we further require
that the beads have the correct orientations. To achieve this,
each bead has a binary internal state, representing the correct (or
incorrect) range of values of its dihedral angles. This is similar to
the ideas presented in the Mufioz—Eaton (ME) model** where
each amino acid is allowed two internal states, folded or unfolded.
While the ME model has been solved exactly in a restricted form>*

and incorporated into more extensive models,”> we exploit the
fact that the ME model generates a density of internal states that
is easily decoupled with the positional microstates, thus leading
to more precise estimate of the thermodynamic variables. The
permutations of these internal states generate an ensemble of
microstates; let the set of all such state sequences be denoted /',
with the vector s € /" representing a particular sequence of the
internal states. It will be useful to refer to the total number of
folded beads for a state 0 = & s, with the unfolded/folded states
defined, indexed by s; = 0/s; = 1, and amino acid residue count L.

Our Hamiltonian depends on the number of native and non-
native contacts of all the beads on the lattice and on their internal
state

L L

H(es) = — Z Z wilJ+si8Gy — J-(1 = Gy)] (1)

i=1j=i+2

where w;; = 1 if residues i and j are nearest-neighbors on the
lattice and ], ] represent the strength of the Go model's native
and non-native contacts, respectively. A more intuitive form can
be written by counting the number of contributions from the
native k. and non-native k_ contacts:

A (es) = —Joks +]-k-
L L
k+ = Z Z (,l),IS,S]G,}
im1j=i+t2 (2)
L L
i=1j=i+2

There are two entropic effects incorporated into the free
energy, the crowding and the dihedral angle restrictions. The free
energy of a state ¢, s is

T(es) = A (¢,5) = BAY(0) = fAu(c)  (3)

Here 3 = 1/kg T, BAY(0) is the free energy term associated with
the entropy of the dihedral angle orientation, and SAu(c) is an
entropic cost of inserting the protein into a solution of crowders
(both terms to be defined in later sections). When the crowders
are implicitly modeled as hard-particles, there is only entropic
cost for insertion; the term is truly a free energy contribution. If,
however, the crowder specifically interacts with the protein, this
contribution must be included in the Hamiltonian. The model
admits three fitting parameters (J, J—, h), with h setting the
energy scale of the dihedral angle term SA (o). Additionally,
the crowding term, SAu(c), depends on the concentration and
the geometry of the crowders.

The positional conformation ¢ determines the number of non-
native contacts k_; thus we take Q(c,0/k,) as the density of
states. The partition function can be factored by summing up to
the maximum number of native contacts k% :

Z =Y Y e

cel se’
k

L
= SN S [Qco k) AV B S T o)

cc(’0=0k;, =0 seJ,Zs;=0
(4)

A. Conformational Entropy of Dihedral Angles. Associat-
ing an entropic cost with the correct dihedral angles is an idea that
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goes back to the original Zimm—DBragg (ZB)*® and Lifson— Roig
(LR) models.”” These models were first used for helix—coil
transitions and later extended to include sheets.”® > Letting
each bead have an internal state, native or non-native, allows us to
capture some of the detail present in more complex models yet
still retain the simplicity inherent in lattice models. It is the lack of
spatial degrees of freedom that separate the ZR, LR type models
from the one presented here. In our model each conformation
defines a new Ising-like subproblem, where we consider the
entropy associated with the ensemble of “spins” of only the
nearest neighbor contacts. Our model is actually the generalized
variant of the spin systems, commonly referred to as the Potts
model. There are two major distinctions between the Ising and
Potts models; the spin directions are not necessarily restricted to
two states and the strength of spins in contact are determined by
an interaction matrix. We still retain the two-state model, folded/
unfolded, but our interaction matrix has only a single nonzero
term, contributing only when both spins are in the folded state.
This is evident by the s;s; term in the Hamiltonian since s;s; € {0,
1}. However, each folded residue comes at a price; the entroplc
cost of restricted dihedral angles for a single bead is

BAY(0) = h Zs, = ho (s)

i=1

B. Reduction of State Space - Conformational Decoupling.
Since the Hamiltonian, and thus the free-energy, is a function of
both positional conformations ¢, and the orientational conforma-
tions 0, k,, it would seem that a calculation of the full density of
states Q(c,0)k ), is necessary. We will show, however, that given
a positional conformation, one can decouple the internal states
by grouping similar conformations into isomorphic macrostates.
Consider the matrix

X;i(c) = Gjwj(c) (6)

of the positive energetic contributions to the Hamiltonian when
one ignores the internal states. We can map this symmetric
matrix to a simple, but possibly disjoint graph, X; — g(c), by
observing that X is an adjacency matrix. Let Aut(g(c)) define the
automorphism group to which ¢ belongs. Each Aut(g(c)) is a
permutation group, whose members are related by mapping
the vertices of the graph onto itself through permutation such
that the resulting graph is isomorphic to the original. While all
graphs in the same automorphism group are isomorphic to
each other, we should note that not every graph is physically
realizable in our lattice model due to the restriction that no two
beads can occupy the same lattice site. The key to decomposing
the density of states, however, is the grouping of the graphs, and
hence the conformations. Each automorphism group defines a
finite-graph for a spin-state system. The density of states for this
finite-graph system is calculated by considering, over all possible
“spins” of the system, the restricted counts of ¢ and k.. The
internal states are identical for all members of a particular
automorphism group, thus we can decouple the density of
states as

Q(c,0ky) = Qi(c) (0.k4;X(c)) (7)

As an illustrative example of the decoupling method, consider
a 12-bead homopolymer defined over a cubic lattice where every
connection is favorable (G; = 1if |i — j| > 1) in the particular
conformation shown in Figure la. All of the native connections,

(a) Backbone ¢

“5—5 G
(z
L \Qg

) Native Contacts X(c

Ig@@

) Connection Graph X(c) — g(c)

Figure 1. Sample homopolymer (with all connections favorable) on a
cubic lattice with (a) the backbone and (b) the energetically favorable
connections. The problem of finding the density of states for the internal
conformations of each bead for this conformation is then reduced to
solving the density of states of the Potts model over the graph shown in
(c). Note that the labels in (c) are shown only to guide the eye, all valid
permutations of the indices belong to Aut(g(c)) and hence define the
same Potts subproblem. The G model in the Hamiltonian would make
some of the connections in X(c) unfavorable, further simplifying the
problem. Additionally, our model is defined over a fcc lattice, while the
example shown above is a cubic lattice for illustrative purposes.

which in this case are simply all nearest neighbors, are shown in
Figure 1b. Abstracting the representation to a graph in Figure 1c
shows the finite system that solves the density of states over the
Potts model. Usually, when a Potts/Ising-type system is solved,
the underlying graph has a high degree of symmetry (cubic latti-
ces or Cayley trees are common examples). For a typical graph
produced by our model, this symmetry is broken, forcing us to
numerically compute €,(0,k;X(c)). However, the number of
edges in the graph determine the maximum number of favorable
connections. Since this number is small, the convergence of the
Wang—Landau algorithm on this portion of the DOS is rapid.
In general, grouping a particular ¢ to its automorphism group
requires solving the graph isomorphism problem multiple times.
While specialized algorithms exist,”" the computational solution
is unique in its complexity class and lacks a simple invariant that
definitively determines isomorphism.>> The problem is greatly
simplified if the energetic matrix G permits only a few, highly
degenerate sets of graphs. The Hamiltonian defined for 3-sheets
happens to be one of these favorable partitions. Since the 3-sheet
structure is essentially planar, moving perpendicular to the strand
direction identifies a column of connections. When abstracted to
a graph, the only structure possible is that of a linear chain (unary
tree), whose length is limited by the number of strands. The set of
conformations (&’ for B-sheets create graph structures that have a
high degeneracy and consequently low cardinality in the set of
unique automorphism groups. Additionally, checking for graph
isomorphism of linear chains is trivial since these graphs can be
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uniquely determined by a single number, the chain length. These
two facts combined significantly speed the computation of the
decoupled density of states Q,(c) Q2,(0,k;X(c)).

C. Implicit Crowding Effects. We study the effects of crow-
ders to our protein system using the scaled particle theory. In one
of the original formulations of SPT,* one calculates the work
done to expand a spherical cavity of radius R in a hard sphere fluid
of radius r.. The centers of the fluid particles are excluded from
the cavity region, which implies that meaningful values of R must
be greater than —r.. This work W(R) is the configurational part
of the chemical potential for a single solute particle Au(c(R)).
The relationship between the probability of any particular con-
figuration and the work required to create it is P(R) = exp(—
BAW(R)), where P(R) is the probability that there are no centers
of fluid particles of radius r. in the spherical region (R + r.). If we
approximate both our protein and crowders as hard-spheres, we
can calculate the work required to create the proper cavity. One
first calculates the probability of finding a cavity whose size can
accommodate only a single spherical solute particle. This yields

W(—r<R<0) = —kTIn(1— (4/3)an(R+r.)’) (8)

where 77 is the number density of the solvent. One expands W(R)
around R = 0 to the second order (noting that the leading term
for large R must be the pressure—volume term */37pR> with p as
the pressure of the fluid) and obtains

FA(E(R) = B(Au(e(0) + A (c(0))R
2 A (C(0)R + 5 wp) o

These terms can be computed by the continuity of W(R) and its
first two derivatives at R = 0. The pressure can be found by
substituting in the exact solution of the Percus—Yevick equation,
yielding a density approximation as a function of the packing
fraction ¢. This density route is not unique among thermody-
namic pathways. Expressions have been worked out for both
compressibility and viral routes.** Each of these pathways amo-
unt to a smoothing in the structural information of the fluid as
one “turns-on” the density field. The compressibility and viral
routes tend to yield better approximations to the solvation free
energy, giving

d(—2+7¢— 11¢*)
2(1-¢)°

+ 8¢((11+_¢¢; ) ( 25 ) ’

The above treatment by SPT assumes, however, that the cavity
created is spherical, a condition that is not rigorously satisfied for
the crowders nor the proteins examined in this study. The native
states of the proteins studied in this work can be well approxi-
mated by a right circular cylinder, as the [5-sheet structures are
disk-like. Additionally our crowder, Ficoll 70, is known to have an
elongated shape'® and recent predictions model them as spher-
ocylinders with diameters of 28 A and an end-to-end length of
184 A1

(ﬁAlu) spherical =

—In(1-¢)

(10)

The extension of SPT to work with aspherical mixtures can be
expressed through the activity coefficient.>>*®

The activity coeflicient y; is the measure of the deviation of he
ith species at the actual composition of the solution from the
chemical potential of an ideal solution as given by the equation

RTIny.=u — u° 11
Visl — I

where u{ is the chemical potential of a reference state. For hard-
convex particles the nonideality of a particular species of interest
can be found by computing an expression as a function of the
volume V, surface area S; and the Kihara support function HY of
that species, given by

Iy, = —In(1— (V) + 59 = S_Kif‘i; V(1)
B +2VGHXS) | VXS
20=()* 31w’

where (X) = Zp,X; and (1) = Zp;, are the averages over the
different species, with p; as the number density of that species.
For a right circular cylinder and spherocylinder, respectively, the
Kihara support functions are Hgphereocylin = 177/4 + L/2 and
Heyiinder = 7 + L/4 with r as the radius and L as the length of the
cylindrical section.

In the process of calculating the density of states, we can
sample the conformations to determine the parameters for the
activity coefficient. For each conformation of the peptide we
calculate a best fit circular cylinder by pointing the axis of the
cylinder along the largest principal axis of the bead positions then
scale the radius and length so all beads fit inside. Using eq 11 and
12, we can determine the free energy due to crowders in our
system.

D. The Wang—Landau Density of States Method. Wang—
Landau (WL) salmplinge’8 is a generic algorithm to calculate the
relative density of states (DOS) for a given system. The algo-
rithm starts off with the initial a priori ansatz that all conforma-
tional states are equally likely Q(&) = 1, where { is a confor-
mation of the system. Traditionally, the calculation of the density
of states was computed as a function of the energy of the system.
Like others,>** we use the Wang—Landau method to determine
the density of states for a conformation of the system rather than
the energy explicitly. Each conformation is still directly related to
a numerical energy. By calculating the DOS for conformations,
we can delay the calculation of the energy. This has the advantage
that multiple simulations are not required for each set of the
system parameters (]+, J-, h, b, rc).

In the WL method, the density of states is iteratively refined,
crudely at first to ensure a large sampling, and then with greater
precision as € converges. Similar to a typical Monte Carlo
simulation, the algorithm has an acceptance rate. However,
unlike traditional Metropolis—Hastings simulations, the process
can not be modeled as a Markov chain since the transition matrix
itself is iteratively refined. The WL acceptance rate is

Q(Cp) ne—a /18
Q) nm/nA) (13)

where 1, is the number of outgoing moves from states A and
na—p is the number of moves from A to B (similarly defined for
ng and ng—,). If the moves are reversible, then ng_—.o/na—p = 1.
These factors are necessary for detailed balance if the move set

P(§4—Cp) = min (1
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chosen has a variable number of moves from each state. Once any
particular state had been selected, the density of states is modified
by Q(&) — fQ(&), where fis a constant that is slowly reduced to
unity during the 51mulat10n All of the computatlons carried out
in this paper took fy = e' A 2.71828, fana =€ °, and foy 1 = ()"
Each time a conformation was selected, the DOS is updated
along with a histogram of visits for that conformation H(). The
factor f was reduced when H({) was no less than 90% of the
average number of visits for all conformations (H({)). Once the
factor fhad been reduced, we reset the histogram of visits for all
conformations, H({) = 0, and began the process again.

Our move set consists of pull moves, which were first defined
over a cubic lattice*" and later for triangular lattice models.** Pull
moves are an ergodic, reversible move set that modify the posi-
tional conformations by moving the chain along a path defined by
a pair of beads adjacent in chain sequence (i, i + 1). Since the
number of moves are finite and easily computable, we can quickly
determine the factors necessary for detailed balance (i.e., 14,
Ha—p, etc).

When converged, the WL method gives a flat histogram. That
is, the averaged fraction of time spent at each macrostate
approaches the same constant. Here we define a macrostate as
the set of all conformations with the same energy level. Not every
microstate is visited during the simulation, nor would it be
possible due to the exponential growth in the DOS as a function
of chain length. We assume that the visits to each state are ergo-
dic; subsequent visits to a macrostate will visit each conformation
an equal number of times over long averages. This idea is
reasonable when we consider detailed balance is obeyed for the
Monte Carlo simulation and is employed by Wust and Landau.*’
We exploit this observation to determine a probability distribu-
tion for a second observable as a function of the first. For ins-
tance, we can step through the conformations to compute the
probability distribution of the activity coeflicient for the protein
in a particular conformation c. Doing so prevents the need for a
multiplicative increase in the density of states (thus speeding up
the convergence of the WL algorithm), yet it still provides us with
a reasonable estimate of an extended DOS Q(c,ry).

Ill. RESULTS

A. Model Calibration. Unlike ot-helices, the 3-sheet motif
has been difficult to study experimentally due to its propensity to
aggregate. Recently there has been a spate of designed peptides
that exhibit the [-sheet motif, albeit with extremely broad
thermal transitions.*> We consider and describe below, three
experimentally designed [3-sheets peptides used in this study.
These designed proteins were specifically chosen to test the
model against their readily available experlmental measurements.

The ﬁrst peptide (sequence: RFSEV [PG]KKFITS [PG]-
KTYTEV®[PG]KKILQ, nicknamed P°PPP) is a 28-residue
chain with a natural four-strand 3-sheet structure. This designed
peptide was studied experimentally by Xu et al.® as an extension
of the peptide PPPP-II first proposed by Gellman and co-
workers.** A schematic model of the native state for the peptide
is shown in Flgure 2a. The second peptlde (sequence RFIEV"-
[PG]KKFITS"[PG]KTYTE, nicknamed P"P) is a 20-residue
chain with a natural three-strand f3-sheet secondary structure.*
The final peptide (sequence: GEWTWAD[AT]KTWTWTE,
nicknamed trpzip4-m1) is a 16-residue variant of the tryptophan
zippers studied by Cochran et al.** and later by Du et al.'® Com-
pared to the designed peptides, the tryptophan zippers have

Val
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(a) Chemical Representation
Figure 2. Native state of the peptide "PPPPP represented schemati-
cally. The Pro-Gly amino acid residues at each end are combined to a
single bead to allow for the proper turn structure on the fcc lattice.
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significantly higher stabilities (with a difference of approximately
AGyys A 1.0 keal mol ' at 298 K).

An artifact of the fcc lattice forces the -hairpin to be made
over an odd number of lattice sites; thus we replace the Pro-Gly
residues in the first two designed proteins and the Ala-Thr
residues in the third peptide trpzip4-m1, with a combined residue
(denoted with a square bracket, e.g, [PG]). The experimental
measurements on these peptides have been carried out using
temperature jump experiments, for details see refs 8 and 10.

We use the WL method to calculate the conformations of the
positional Q,(c) and orientational ©,(0,k;;X(c)) density of
states. The model is cahbrated by fitting J, ], and h to the data
of three experiments.® '® We calculate the fraction of B-sheet
contacts, observable from the experiments, by taking the expec-
tation of (0®(a)). Here (o) is the standard Boltzmann average,
O is the Heaviside step function, and o.(c) measures how close
the protein is to its native state. Since the experimental data
measure the fraction of 5-sheet contacts (inferred from a circular
dichroism measurement), we calibrated our model with physi-
cally similar observable,

a(e) = (ke —k=) /K, (14)

This fraction of 5-sheet contacts was used to calibrate the three
free parameters. We note that without the non-native term J_ in
the Hamiltonian in eq 2 the fraction of sheet contacts would be,
as usual, (k. , /K% ) In Figure 3 we show the fits of the two proteins
trpzip4-m1 and "PPP with the fitting parameters given in Table 1.
The fits are quite good, encouraging us to make predictions about
the system behavior as a function of crowding packing fraction. It
is worth noting that the three- and four-stranded designed f-
sheets had the best fits with J_ = 0, implying that additional
stabilization provided by the term was needed only to model
trpzip4-m1. This may not be surprising when the larger melting
points and the broad thermal transitions of the designed proteins
are considered versus those of the smaller $-hairpin peptide
(listed in Table 2).

B. Effects of Crowders. In this section we use the model
defined above to study the effects of crowders on peptide/
protein structures and stability. For one of the peptides we have
the experimental results on crowding effects to compare with. In
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Figure 3. Experimental data of fraction folded versus temperature for
trpzip4-m1 (blue circles) and the three stranded f-sheet PpPp (red
diamonds). Model fits are shown with dashed lines of the same color.
The thin (black) vertical lines are shown to mark the critical tempera-
tures at 36.1 and 48.5 °C for three-stranded and trpzip4-m1 peptides,
respectively. The fit for the four-stranded 3-sheet PP P is similar to
the three strand and is not shown for clarity.

Table 1. Fit Parameters of the Free Energy (eq 3) to the
Model for Each Peptide”

h Js J-
trpzip4-ml 9.396 6526.8 4691.6
three-stranded 5.103 2228.8 0.0
four-stranded 4319 1751.3 0.0

“Here ], J— are the strengths of the native and nonnative bonds and
h sets the energy scale of the dihedral angle term.

the paper by Mukherjee et al.” a significant change (approxi-
mately 12 °C) in the melting point of trpzip4-m1 was observed
under crowded conditions. The crowder chosen for this experi-
ment was Ficoll 70 (F70) at a concentration of 200 mg/mL. F70
is a compact, highly cross-linked branched copolymer of sucrose
and epichlorohydrin with an average molecular weight of 70 000.*
At 200 and 300 mg/mL the packing fractions are approximately
¢ = 0.13 and ¢ = 0.20, respectively.*”** We study the effects of
crowders by considering the specific heat, Cy/(T) = B*((E*) —
(E)*) and note that in all cases, we observe only a single maxima.
We identify this maxima as the melting temperature T (alter-
natively, (3Cy/0T)|r. = 0).

Heat capacity as a function of temperature for trpzip4-ml is
shown in Figure 4 while the melting points for all peptides are
listed in Table 2. As expected, trpzip4-m1 displays crowding
enhanced stability with the change of critical temperature AT, =
[1.03,1.65] °C at packing fractions ¢ = [0.13, 0.20], respectively.
However, the three- and four-stranded S3-sheets exhibit a slight
decrease in their critical temperatures with ¢, indicating an
entropically based instability caused by the crowders.

The native state for the three- and four-stranded [3-sheets are
highly aspherical. When the entropic effects of crowders are
considered, the system prefers compact conformations that mini-
mize the excluded volume effect. As a consequence of this, the
native state ceases to be the minimum free energy conformation
at large enough ¢. Crowding-induced conformational change of
the native state has been observed experimentally in a recent work
by Dhar et al.*® who studied phosphoglycerate kinase (PGK) with
the same crowders as our simulations (Ficoll 70). In this study, the

Table 2. List of the Experimental and Model Melting Points
(°C) for Each Peptide”

experimental ¢$=0 ¢ =0.13 ¢ =020
trpzip4-m1 32.14+09 36.12 37.15 37.76
three-stranded 52.6+04 48.49 48.23 48.10
four-stranded 50.5+0.8 49.18 49.01 48.94

“The experimental melting points are taken from refs 8—10 in a dilute
solution without crowders. The calculated melting points from the
model are given at the listed values of the packing fraction. Not shown is
the experimental value of trpzip4-m1 in the Ficoll 70 solution of 200 mg/mL
with T¢ = 44.0 & 0.2 °C.
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Figure 4. Specific heat per residue count for the protein trpzip4-m1 in
the presence of crowders.

conformational states were changed dramatically with crowders; an
optimal nonzero packing fraction of crowders was found to increase
the protein's activity. In our simulation, there was no shift to a new
distinct native state at higher crowding concentrations. Rather, we
observed a gradual shift toward more compact conformations at the
expense of breaking energetically favored bonds, a general collapse
of the [3-sheet. As an example of the native conformation, which is
enthalpically favored, versus an entropically favored one (Figure S).
Previous studies that showed crowding enhanced stability often
dealt with globular wild-type proteins, whose natural environment
required them to operate in crowded conditions. In contrast to the
PGK study, the two larger peptides in our study were not wild-type,
rather they were designed and studied because of the fact that they
folded into [-like conformations at realistic temperatures without
aggregation. This suggests further experimentation on the designed
peptides to determine if the destabilization of the native state against
those of the unfolded and intermediate states under crowded
conditions can be observed experimentally.

To assess the effect on the conformational states, we examine
the Boltzmann averaged excess chemical potential from the
native state as a function of temperature and ¢

BlAu,(T)) = (Iny, —Inyy) (15)

Figure 6 of this free energy term for trpzip4-m1 illuminates
several interesting structural features from an ensemble perspec-
tive. At large temperatures we see that this excess chemical
potential approaches a constant, proportional to the change in
the unfolded states due to the crowders. Conversely, at very low
temperatures crowders have no effect on the only viable con-

dx.doi.org/10.1021/jp107809r |J. Phys. Chem. B XXXX, XXX, 000-000
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Figure 5. Example of native state (top) and intermediate state
(bottom) of the three-stranded peptide. The top state has ten bonds
(shown as thin blue lines) while the bottom has eight bonds, making the
native state favored energetically. However, the ratio of activity coeffi-
cients In y;/In 7, is 1.13 at 200 mg/mL (¢ = 0.13) and favors the eight-
bond structure due to the entropic crowding effects. The C and N
terminus marked with red and green beads, respectively, and the
combined Pro-Gly amino acid residues are purple beads.
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Figure 6. Excess chemical potential (defined in eq 15) for the protein
trpzip4-m1l in the presence of crowders.

formation, the native state. Near the folding transition tempera-
ture, the effect is large and nonlinear.

IV. CONCLUSION

In this paper we developed a coarse-graining model for
proteins by combining the Ising-like state information of the
dihedral angles of the modeled [3-sheet structures with a fcc lat-
tice model. The density of states has a favorable decoupling that
enabled us to use the Wang—Landau method to determine the
partition function accurately, giving excellent quantitative agree-
ment with previous in vitro experiments. Using our model and

the predictions of SPT, we found crowding-induced stability, in
qualitative agreement with experiment for the smaller peptide,
trpzip4-m1. The effect predicted by this model showed a modest
change of about ~1 °C, in contrast to the large change observed
in the experiments of Mukherjee.” We note, however, that these
coarse-grained models are approximations and selectively ignore
various interactions. The study presented here is an entropic one.
If the crowders have enthalpic interactions with the peptide, then
these predicted effects will be incomplete. We attribute this
underestimation to effects that cannot be explained by excluded
volume effects alone.

We found that that the model predicted instability for the
designed three- and four-stranded [-sheet peptides. This is
consistent with the observation that their native state does not
minimize excluded volume effects (it is disk-like rather then
globular). This observation alone, however, is not sufficient to
predict of crowding based instability. Even if the native state is
nonideal, one has to consider the entire ensemble of states as a
whole. This was possible using the Wang—Landau method,
which allowed us to accurately determine the density of states
under the constraints of our model.

The extension of the Go-like contact map to a finite graph
presented here is not limited to the 5-sheet motif. This entropic
model of conformational states can be extended to at-helices or a
mixture of secondary structures, as long as the contact graph
structure can be decomposed into simple degenerate forms.
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