Recitation Problems (Week 4)

All problems taken from University Physics, Young and Freedman, 12th Ed.

30.36. IDENTIFY: Evaluate $\frac{d^2q}{dt^2}$ and insert into Eq.(20.20).

SET UP: Equation (30.20) is $\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$.

EXECUTE: $q = Q \cos(\omega t + \phi) \Rightarrow \frac{dq}{dt} = -\omega Q \sin(\omega t + \phi) \Rightarrow \frac{d^2q}{dt^2} = -\omega^2 Q \cos(\omega t + \phi).$

$$\frac{d^2q}{dt^2} + \frac{1}{LC}q = -\omega^2 Q \cos(\omega t + \phi) + \frac{Q}{LC}\cos(\omega t + \phi) = 0 \Rightarrow \omega^2 = \frac{1}{LC} \Rightarrow \omega = \frac{1}{\sqrt{LC}}.$$

EVALUATE: The value of ϕ depends on the initial conditions, the value of q at t=0.

32.1. IDENTIFY: Since the speed is constant, distance x = ct.

SET UP: The speed of light is $c = 3.00 \times 10^8$ m/s . 1 yr = 3.156×10^7 s.

EXECUTE: (a) $t = \frac{x}{c} = \frac{3.84 \times 10^8 \text{ m}}{3.00 \times 10^8 \text{ m/s}} = 1.28 \text{ s}$

(b) $x = ct = (3.00 \times 10^8 \text{ m/s})(8.61 \text{ yr})(3.156 \times 10^7 \text{ s/yr}) = 8.15 \times 10^{16} \text{ m} = 8.15 \times 10^{13} \text{ km}$

EVALUATE: The speed of light is very great. The distance between stars is very large compared to terrestrial distances.

32.4. IDENTIFY: $c = f\lambda$ and $k = \frac{2\pi}{\lambda}$.

SET UP: $c = 3.00 \times 10^8 \text{ m/s}$.

EXECUTE: (a) $f = \frac{c}{\lambda}$. UVA: 7.50×10^{14} Hz to 9.38×10^{14} Hz. UVB: 9.38×10^{14} Hz to 1.07×10^{15} Hz.

(b) $k = \frac{2\pi}{\lambda}$. UVA: 1.57×10^7 rad/m to 1.96×10^7 rad/m. UVB: 1.96×10^7 rad/m to 2.24×10^7 rad/m.

EVALUATE: Larger λ corresponds to smaller f and k.

32.15. IDENTIFY: I = P/A. $I = \frac{1}{2}\epsilon_0 c E_{\text{max}}^2$. $E_{\text{max}} = c B_{\text{max}}$.

SET UP: The surface area of a sphere of radius r is $A = 4\pi r^2$. $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$.

EXECUTE: (a) $I = \frac{P}{A} = \frac{(0.05)(75 \text{ W})}{4\pi (3.0 \times 10^{-2} \text{ m})^2} = 330 \text{ W/m}^2$.

(b)
$$E_{\text{max}} = \sqrt{\frac{2I}{\epsilon_0 c}} = \sqrt{\frac{2(330 \text{ W/m}^2)}{(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2)(3.00 \times 10^8 \text{ m/s})}} = 500 \text{ V/m}$$
. $B_{\text{max}} = \frac{E_{\text{max}}}{c} = 1.7 \times 10^{-6} \text{ T} = 1.7 \ \mu\text{T}$.

EVALUATE: At the surface of the bulb the power radiated by the filament is spread over the surface of the bulb. Our calculation approximates the filament as a point source that radiates uniformly in all directions.

IDENTIFY and SET UP: The direction of propagation is given by $\vec{E} \times \vec{B}$. 32.16.

EXECUTE: (a)
$$\hat{S} = \hat{i} \times (-\hat{j}) = -\hat{k}$$
.

- (b) $\hat{S} = \hat{j} \times \hat{i} = -\hat{k}$.
- (c) $\hat{S} = (-\hat{k}) \times (-\hat{i}) = \hat{i}$.
- (d) $\hat{S} = \hat{i} \times (-\hat{k}) = \hat{i}$.

EVALUATE: In each case the directions of \vec{E} , \vec{B} and the direction of propagation are all mutually perpendicular.

IDENTIFY: For a totally reflective surface the radiation pressure is $\frac{2I}{a}$. Find the force due to this pressure and 32.54.

express the force in terms of the power output P of the sun. The gravitational force of the sun is $F_g = G \frac{mM_{sun}}{r^2}$.

SET UP: The mass of the sum is $M_{sun} = 1.99 \times 10^{30} \text{ kg}$. $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.

EXECUTE: (a) The sail should be reflective, to produce the maximum radiation pressure.

(b) $F_{rad} = \left(\frac{2I}{c}\right)A$, where A is the area of the sail. $I = \frac{P}{4\pi r^2}$, where r is the distance of the sail from the sun.

$$F_{\rm rad} = \left(\frac{2A}{c}\right) \left(\frac{P}{4\pi r^2}\right) = \frac{PA}{2\pi r^2 c} \; . \; \; F_{\rm rad} = F_{\rm g} \; \; {\rm so} \; \; \frac{PA}{2\pi r^2 c} = G \frac{m M_{\rm sun}}{r^2} \; .$$

$$A = \frac{2\pi c GmM_{sun}}{P} = \frac{2\pi (3.00 \times 10^8 \text{ m/s})(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)(10,000 \text{ kg})(1.99 \times 10^{30} \text{ kg})}{3.9 \times 10^{26} \text{ W}}.$$

$$A = 6.42 \times 10^6 \text{ m}^2 = 6.42 \text{ km}^2$$
.

(c) Both the gravitational force and the radiation pressure are inversely proportional to the square of the distance from the sun, so this distance divides out when we set $F_{rad} = F_e$.

EVALUATE: A very large sail is needed, just to overcome the gravitational pull of the sun.

IDENTIFY and SET UP: Source and observer are approaching, so use Eq.(37.25): $f = \sqrt{\frac{c+u}{c-u}} f_0$. Solve for u, the 37.25. speed of the light source relative to the observer.

(a) EXECUTE:
$$f^2 = \left(\frac{c+u}{c-u}\right) f_0^2$$

$$(c-u)f^2 = (c+u)f_0^2$$
 and $u = \frac{c(f^2 - f_0^2)}{f^2 + f_0^2} = c\left(\frac{(f/f_0)^2 - 1}{(f/f_0)^2 + 1}\right)$

$$\lambda_0 = 675 \text{ nm}, \quad \lambda = 575 \text{ nm}$$

$$u = \left(\frac{(675 \text{ nm}/575 \text{ nm})^2 - 1}{(675 \text{ nm}/575 \text{ nm})^2 + 1}\right)c = 0.159c = (0.159)(2.998 \times 10^8 \text{ m/s}) = 4.77 \times 10^7 \text{ m/s}; \text{ definitely speeding}$$

(b) 4.77×10^7 m/s = $(4.77 \times 10^7 \text{ m/s})(1 \text{ km/}1000 \text{ m})(3600 \text{ s/}1 \text{ h}) = 1.72 \times 10^8 \text{ km/h}$. Your fine would be \$1.72 \times 10^8 (172 million dollars).

The source and observer are approaching, so $f > f_0$ and $\lambda < \lambda_0$. Our result gives u < c, as it must.