
PHYS 201 WINTER 2010

HOMEWORK 6

Solutions

1. Space Oddity

Since we’ll be using Einstein’s γ repeatedly for this problem, here it is:

γ ≡ 1√
1− v2

c2

=
1√

1−
(

2.80·108

3.00·108

)2 ≈ 1√
1−

(
14
15

)2 ≈ 2.785

1.1. By definition, electromagnetic radiation travels at 1 ly/year. The spaceship
travels at 14

15
times the speed of light, which is 14

15
ly/year. Spaceships obey dis-

tance = rate × time just like any other object; the tricky part in relativity is that
“distance” and “time” can be different to different observers. From Earth’s point
of view, the distance is 20.3 ly and the ship’s speed is 14

15
ly/year, so

20 ly = 14
15

ly/year × t ⇒ t ≈ 21 years

The ship arrives about a year after Earth receives the radio message. (If you did
this problem using meters and seconds instead of light-years and years, you should
get the same answer: 21 years ≈ 6.6 · 108 seconds.)

1.2. The distance to Gliese 581 is 20 ly from the point of view of anyone who
is not moving relative to either planet. That’s the “proper length” ∆L0 of the
journey. The navigators onboard the ship see a contracted length ∆L:

∆L =
1

γ
∆L0 ≈

1

2.785
(20) ≈ 7.2 ly

1.3. From the navigators’ point of view, the distance to Earth is 1
γ
20 ≈ 20

2.785
≈ 7.2

light-years and Earth is moving towards them at 14
15

ly/year:

d = rt ⇒ 20

2.785
ly =

14

15
ly/year× t ⇒ t ≈ 7.7 years

From Earth’s point of view, the ship takes 20 · 15
14
≈ 21 years to arrive. But to

Earthlings, the ship’s clocks appear to run slow due to time dilation:

∆t = γ(∆t0) ⇒ 20 · 15

14
= 2.785(∆t0) ⇒ t0 ≈ 7.7 years
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Earthlings and navigators agree that the ship’s “proper” time - the time shown on
its own clock - increases about 7.7 years during the journey. Either method works,
but be careful not to use d from one point of view and t from another!

1.4. To an Earth observer, the ship’s speed is 2.80 · 108 m/s. Using γ = 2.79,

K = (γ − 1)mc2 = (1.79)(250, 000 kg)(3.00 · 108 m/s)2 ≈ 4.0 · 1022 joules

This is more than the total energy used by all humans during the 20th century.

2. X-Ray Specs

The peak intensities are at the original wavelength of λ0 = 50.0 picometers and
another wavelength λ′ given by the formula for Compton scattering:

λ′ − λ0 =
h

mec
(1− cos θ)

The angle between the beam direction and the doctor is 135◦. Plugging in the
usual values for h and c and the electron mass me ≈ 9.11 · 1031 gives

λ′ = λ0 +
h

mec

(
1− −1√

2

)
= 5.41 · 10−11 = 54.1 picometers

3. Goalie de Broglie

The momentum of a hockey puck at 150 km/h is

mv = 0.150 kg · 150 km/h · 1000 m

km
· 1 h

3600 s
≈ 6.25 kg ·m/s

Planck’s constant in MKS units is ≈ 6.626 · 10−34 J·s, so

λ =
6.626 · 10−34

6.25
≈ 1.06 · 10−34 meters

This is absurdly small compared to the size a typical hockey puck. A useful rule-
of-thumb is that wave behavior of physical objects is negligible when an object’s
de Broglie wavelength is much smaller than the object itself. This is why we don’t
notice diffraction and interference for common objects like hockey pucks.

4. What’s In The Box?

The wavenumber k for this function is just the number that goes in front of x:
k = 7π

L
. Since k = 2π

λ
, the wavelength is λ = 2

7
L. (To get a better visual idea of

what this means, pick a number for L and use a calculator or computer to plot
ψ7(x). The distance between peaks will be 2

7
times whatever number you chose.)

We can rewrite E = p2

2m
in terms of de Broglie wavelength λ:

E =
p2

2m
=

(h
λ
)2

2m
=

h2

2mλ2
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Plugging in our result λ = 2
7
L, we find

E =
h2

2m( 4
49

)L2
=

49h2

8mL2

Notice that this answer matches the formula in the book En = n2h2

8mL2 .

5. Uncertainty Principle

∆x is given, so we can find the minimum ∆px easily:

(1 · 10−10 m)∆px ≥
h

2π
≈ 1.055 · 10−34 J · s

⇒ ∆px ≥ 1.055 · 10−24 kg ·m/s

Notice the direction of the inequality: this is the minimum uncertainty for px.

6. Bonus Problem

This problem simplifies greatly because E and U0 are given:

G = 16

(
2

5

)(
1− 2

5

)
=

96

25
= 19.2

κ =

√
2(9.11 · 10−31 kg)(3 · 103 eV)(1.602 · 10−19J/eV)

1.055 · 10−34 J · s

κ =
2.959 · 10−23 kg ·m/s

1.055 · 10−34 kg ·m2/s
≈ 2.80 · 1011 m−1

Note that we have to convert (U0 − E) from keV to joules or else κ will have the
incredibly confusing unit kg·keV·J−1s−1 instead of m−1. (I didn’t convert to joules
before finding G because it is dimensionless: E

U0
is the same in any units.)

We know the tunneling probability T as a function of L, so we can solve for L:

T = Ge−2κL ⇒ ln

(
T

G

)
= −2κL ⇒ L =

1

2κ
ln

(
G

T

)
There are two barriers, so the probability of the electron being detected outside
the barriers is twice the value of T . Setting 2T = 0.01 and solving for L, we find

L =
1

2(2.80 · 10−11 m−1)
ln

(
19.2

.005

)
≈ 1.47 · 10−11 meters = 14.7 picometers

This distance is on the order of the Bohr radius, which is about 53 picometers.
Tunneling may be negligible for hockey-puck-sized objects, but in chemistry and
nuclear physics it is extremely important.


