## PHYS 201 WINTER 2010

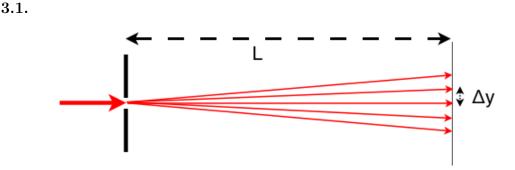
## HOMEWORK 4

# Write down all steps towards the solution to obtain maximum credit. Don't forget to specify units!

# 1. Half-Baked

A more precise way to say that an oven is "red-hot" would be "the peak spectral emittance of this oven has a wavelength in the range  $630 \le \lambda \le 740$  nanometers." **At what temperatures is an oven red-hot?** Look up Wien's displacement law, treat the oven as an approximate blackbody, and give your answer in °C.

#### 2. Sunglasses At Night


Engineers for the secretive PrimaTech company are designing anti-reflective coatings for sunglasses to be worn by Secret Service agents. The sunglasses are made of polycarbonate and the coating is made of MgF<sub>2</sub>. The indices of refraction for these materials are n = 1.585 and n = 1.374, respectively. (Use  $n \approx 1.000$  for air.)

2.1. Does light traveling through air undergo a phase shift when it reflects off of  $MgF_2$ ? What about when light traveling through  $MgF_2$ reflects off of polycarbonate? Explain your answers.

2.2. How thick (in nanometers) should the coating be in order to block green reflections with wavelength  $\lambda = 525$  nm? Hints: Look up "thin-film interference." The engineers' goal is to ensure that light reflected off the MgF<sub>2</sub> interferes destructively with light reflected off the polycarbonate.

#### 3. The Bends

When light of wavelength  $\lambda$  passes through a slit of size a, it produces an interference pattern called a *Fraunhofer pattern*. The Fraunhofer pattern is a complicated function, but there is a simple formula for the locations of its minima:  $a(\sin \theta_{min}) = m\lambda$ , where m can be any integer. At the angles  $\theta_{min}$ , light interferes destructively and dark fringes appear.



A red laser pointer ( $\lambda = 680$  nm) is aimed at a slit of width *a*. The light strikes a wall L = 5.00 meters away and produces dark fringes at distances  $\Delta y = \pm 4.20$ mm,  $\pm 8.40$  mm,  $\pm 12.6$  mm, etc. from the center. Find *a* in microns. (Hint: Use any of the small-angle formulas  $\sin \theta \approx \theta, \cos \theta \approx 1$ , and  $\tan \theta \approx \theta$ .)

**3.2.** A diffraction grating is a series of equally-spaced slits each a distance d from their neighbor. When light strikes a diffraction grating at an angle normal to the grating, it can appear to "bend" by producing bright spots at certain angles  $\theta_{max}$  given by the formula  $d(\sin \theta_{max}) = m\lambda$  where m can be any integer.

The rows of data in a compact disc are about 1.5  $\mu$ m apart from each other. Together with the reflective coating on a CD, they act like a diffraction grating in front of a mirror. When a laser is aimed at a CD, the light reflects and produces bright spots at angles of  $\pm 26.4^{\circ}$  and  $\pm 62.5^{\circ}$ . What is  $\lambda$  for this laser?

# 4. Bonus Problem

Einstein's explanation of the photoelectric effect claims that energy from light is exchanged in discrete packets called "quanta" or "photons." Each photon has energy E = hf, where f is light frequency and h is a number called Planck's constant.

According to quantum mechanics, a photon can ionize a hydrogen atom (that is, separate it into a proton and an electron) if its energy is at least 13.6 electron volts. What is the minimum frequency of light needed to ionize a hydrogen atom? Can visible light ionize a hydrogen atom?