
PHYS 201 WINTER 2010

HOMEWORK 1

Solutions

1. A Lopsided Pedulum

The only force acting on this system is gravity. The above picture shows the weight
mg of each sphere broken into components parallel and perpendicular to the rod.
(The component of weight parallel to the rod is not needed; it simply stretches or
squishes the rod, which in this case is assumed to be nearly rigid.)

1.1. Write an equation of motion for this object.

The torque on each sphere is mg(sin θ) times the leverage. Choosing clockwise as
the positive direction for θ, the total torque is τ = τtop − τbottom.

τ = −2dmg(sin θ) + dmg(sin θ) = −dmg(sin θ) = −50(sin θ) N ·m

The moment of inertia for a point mass is I = mr2. For the two masses here,

I = md2 +m(2d)2 = 5md2 = 25 Kg ·m2

Substituting these into τ = Iθ̈, the equation of motion is

−dmg(sin θ) = 5md2(θ̈) ⇔ −g(sin θ) = 5d(θ̈) ⇔ −2(sin θ) = θ̈
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1.2. Solve the equation of motion for small oscillations and zero friction.

For small angles, sin θ ≈ θ. The resulting equation of motion is −gθ = 5d(θ̈),
which is the (undamped) spring equation with g and 5d in place of of k and m.

θ(t) = A cos(ωt+ φ) ω =

√
g

5d
=
√

2

The initial conditions given were θ(0) = 0.87 radians and θ̇(0) = 0.

0.87 = θ(0) = A cos(φ) 0 = θ̇(0) = −
√

2A sin(φ)

Since A is not zero, the second condition requires φ = 0 (or ±π,±2π,±3π, etc).
Plugging that back into the first condition requires A = 0.87. The answer is:

θ(t) = 0.87 cos(
√

2t)

1.3. How does the oscillation frequency change if friction is included?
Including friction, the small-angle equation of motion is

−dmg(θ)− β(θ̇) = 5md2(θ̈) ⇔ −50(θ)− 10(θ̇) = 25(θ̈)

This is the same equation as a damped spring oscillator, but with dmg, β, and
5md2 in place of k, b, and m. The frequency of a damped spring oscillator is:

ω′ =

√
k

m
− b2

4m2
→

√
dmg

5md2
− β2

4(5md2)2

Plugging in the numbers given in the problem,

ω′ =

√
50

25
− 100

4(625)
=

√
2− 1

25
=

√
49

25
=

7

5
rad/s

2. Energy Dissipation in a Shock Absorber

The solution to mẍ+ bẋ+ kx = 0 given in the textbook is:

x(t) = Ae−
b

2m
t cos(ωt+ φ) ω =

√
k

m
− b2

4m2

2.1. At what time are the oscillations half as large as they were at t = 0?

The solution can be split into (amplitude function) × (oscillating function). The

amplitude function is Ae−
b

2m
t. At t = 0, this function is simply A. Let thalf denote

the time at which the amplitude is 1
2
A.

Ae−
b

2m
thalf =

1

2
A ⇒ − b

2m
= ln

1

2
= − ln 2 ⇒ thalf = 2(ln 2)

m

b
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2.2. Show that this system conserves energy if b = 0. If b is positive,
show that the system loses energy. Where does the energy go?

With no friction, the equation is mẍ+ kx = 0. The solution from the book is:

x(t) = A cos(ωt+ φ) ω =

√
k

m

The energy of the system at any time t is E = potential + kinetic = 1
2
kx2+ 1

2
m(ẋ)2,

which is not too hard to calculate directly:

x2 = A2 cos2(ωt+ φ) (ẋ)2 =
[
− ωA sin(ωt+ φ)

]2
= ω2A2 sin2(ωt+ φ)

Plugging these into the equation for energy and using ω =
√

k
m

, we find

E =
1

2

[
kA2 cos2(ωt+ φ) +mω2A2 sin2(ωt+ φ)

]
=

1

2
kA2

[
cos2(ωt+ φ) + sin2(ωt+ φ)] =

1

2
kA2

using the trigonometric identity sin2(θ) + cos2(θ) = 1. Notice that we have found
an explicit expression for the energy in any undamped simple harmonic oscillator!
It depends only on the amplitude and spring constant and does not change in time.

If b > 0, then consider what happens after a very long time t→∞.

lim
t→∞

x(t) = lim
t→∞

Ae−
b

2m
t cos(ωt+ φ) = 0

The oscillating function cos(ωt+φ) does not approach any limit as t→∞; it just

oscillates between 0 and 1. The amplitude function Ae−
b

2m
t approaches zero as

t→∞, so the oscillations “die out” and eventually the shock absorber is approx-
imately at equilibrium with no potential or kinetic energy.

Conservation of energy requires that the energy go somehwere. In this case, it is
spent stirring the fluid. Viscous fluids dissipate energy as heat when stirred.

3. Bonus Problem

Find the first and second derivatives of the complex-number solution to x(t):

ẋ(t) = rAert + sBest ẍ(t) = r2Aert + s2Best

Plug them back into the equation mẍ+ bẋ+ kx = 0 to find

(mr2 + br + k)Aert + (ms2 + bs+ k)Best
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In order for this to be true for all times t and any choice of initial conditions A,B,
the terms in parentheses must be zero. The complex exponents r and s must be
the two roots of the quadratic equation mr2 + br + k = 0.

r, s =
−b±

√
b2 − 4mk

2m

For a critically-damped system, b = 2
√
km ⇒ b2 − 4mk = 0. Thus a spring is

critically damped if and only if its complex exponents are double roots.

For an underdamped system, b < 2
√
km. This means b2 − 4mk is negative, so

√
b2 − 4mk =

√
−(4mk − b2) = ı

√
4mk − b2

The complex exponents r and s can now be written

r, s =
−b± ı

√
4mk − b2

2m
= − b

2m
± ı
√
k

m
− b2

4m2

The imaginary part is the damped-oscillator frequency ω′ and the real part is the

exponent for the amplitude function e−
b

2m
t. This is the advantage of using complex

exponents to solve linear differential equations: they turn hard problems (solve a
damped-oscillator equation) into easy problems (use the quadratic formula).


