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Water is of key importance in the living world.

Continuous description versus motion of individual H20 molecules
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Continuous description of water uses the velocity field, which
in general can change with a spacial position (x,y,z) of a small
volume of water and time:

v r , t
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Q: What distinguishes liquids from solids?

A: Solids and liquids respond to applied forces differently:
Solids undergo deformation, liquids flow.

Mechanical properties
of liquids are described
by viscosity (in analogy
to Young modulus E 
that describes solids).

For simple, Newtonian
fluids: pulling force
Results in a constant
velocity fluid motion:

F
A=

v
d
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Viscosity:

Viscosity of water:

Equation of motion for a Newtonian fluid:

Consider a small fluid element and apply Newton's second law
to its motion: 

 

[Pa⋅s] ,where1Pa=10−5N /m2
=10−5atm

=1mPa⋅s=10−8N/m2⋅s=10−8atm⋅s

F=ma
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r=x , v ,z v=vx , vy , vzIn general, we need to consider:

To derive the equation of motion, we will assume a one-dimensional
Problem:

The element moves along the x-direction by x in time t:

Thus we can calculate the change of velocity and thus acceleration 
along the x-direction:

v x , t=v x , tex ex ...unit vector alongx−direction

v xx , t t = v x , t  ∂ v
∂ xx  ∂ v

∂ t  t

v x , t = x
 t 

∂ v
∂ xx = ∂ v

∂x⋅
x
 t⋅ t = ∂ v

∂x⋅v⋅ t

v x , t = [∂ v
∂ t

 v x , t ∂ v
∂ x ] t 

a x , t = v x , t
 t

=
∂ v x , t

∂ t
 v x , t ∂ v x , t

∂ x
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We can express the acceleration of a fluid element at position x 
and at time t as a material derivative:

which is defined as:

Material derivative consists of two parts:
(1) conventional explicit time dependence reflecting the field
      variable v that is changing with time
(2) convective term: a material particle can be dragged into

a region of space, where the field is different

Example of a temperature field T(x, t):
(1) fluid is resting but T is changing with time 

(e.g. heating):

(2) fluid is moving, steady state T gradient: 

a= Dv
DtD

Dt =
∂

∂ t  v⋅∇

D
Dt

=
∂

∂ t
D
Dt

= vx⋅∇
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Two different kinds of forces are acting on a fluid volume element

          pressure force                             viscous stress force

x×y×z
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Pressure Force: due to variations in the pressure along x, y, z
Viscous Stress Force: friction on the volume element due to 

a velocity gradient along x, y, z

The total pressure force along the x-direction:

The viscous force on the face at position x is:

whereas on the face at position x + x is:

Fx
p
= p x ,y , z, tyz − p xx ,y , z, tyz

p xx , y ,z , t ≈ p x ,y , z, t  ∂p
∂ x

x 

Fp
=−∇pxyz where ∇p = ∂p

∂ x , ∂p
∂ y , ∂p

∂ z 

−
∂ vzx
∂ x

yz ez


∂ vzxx

∂ x
yz ez
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The total viscous stress force is then a sum of the two:

In general, the total viscous stress force can be written as:

If we only consider incompressible fluids, then                     and:

Fz
v =−

∂ vzx
∂ x

yzez  
∂ vzxx

∂x
yzez

∂ vz xx
∂ x

≈
∂ vzx
∂ x


∂

2 vzx
∂ x2 x

Fz
v
= 

∂
2 vzx
∂ x2 xyz

Fv = ∇ 2 v   '∇∇⋅vxyz

∇⋅v = 0

Fv
= ∇

2v xyz
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Incompressible fluids: the flow can distort and stretch the fluid
element but preserves its volume.
Consider a volume element at a time t:

A moment later, at t + t:

Thus the volume change is: 

x×y×z

x ' = x1 ∂ vx

∂ x  t
y ' = y1 ∂ vy

∂ y  t
z' =z1 ∂ vz

∂z  t
x ' y ' z ' =x y z [1  ∂ vx

∂ x

∂ vy

∂ y

∂ vz

∂z ]
x ' y ' z' = x y z 1∇⋅v 
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The Newtonian Fluid and the Navier-Stokes Equation

kinematic viscosity

The Navier-Stokes equation is a second-order partial 
differential equation: need to specify the boundary conditions:

no-slip condition = at a solid boundary the fluid is at rest with
respect to the solid 

ma = Fp  Fv where m= xyz
∂v
∂ t  v⋅∇v =−

1

∇p  ∇

2v where =


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Fluid Dynamics of Blood

➔ a process of blood circulation
➔ blood vessels ranging in size from 2 m to 1 cm
➔ use cylindrical symmetry to describe the blood flow

➔ consider only steady state: 

v = v rez

∂v
∂ t = 0
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Consider a small volume element in the shape of a hollow cylinder
and calculate the opposing pressure forces:

and the opposing viscous stress forces:

Use the Taylor expansion:

To derive the expression for the viscous stress force:

In a steady state, a force balance on the hollow fluid cylinder is:
 

Fz
p
= [p z−p zz]2rr =−

dp
dz 2r rz

Fz
v
= v 'rr 2rr z −  v 'r 2 rz where v ' =

dv
dr

v ' r r ≈ v ' r  dv '
dr  r

Fz
v
= v '2 rz  

dv '
dr

2 r rz

Fz
p  Fz

v = 0
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This results in a differential equation relating the pressure and 
velocity fields:

Laplacian of the velocity field in cylindrical coordinates

How do we solve this equation? 
Integrate both sides along the z direction along the length L:

pressure drop along the length of the pipe

Now integrate twice along r to get a solution:

1


dp
dz

=
1
r

dv
dr


d2 v
dr2 =

1
r

d
dr r dv

dr 

−1

p =

1
r

d
dr r dv

dr L where p = p 0−p L

v r =−
p
L r

2

4
−

C1

r2 C2
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Take into account the boundary conditions:

We derive the final expression for the fluid velocity in the pipe:

The fluid moves the fastest in the center of the pipe and not at all
at the boundaries. We need an average velocity        which can be 
related to the flow rate Q:

The average velocity and the resulting flow rate are:

v r=0∞  C1=0

v r=d
2=0 no−slip  C2=

−d2

16

v r = p
4L d

2

4
− r2

〈v〉

Q =
〈v〉d2

4

〈v〉 =
∫0

d/2 v r2 r dr
d2

4

=
p d4

128L  Q =
pd4

128L
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Estimated blood flow through capillaries:

A measured pressure difference across a capillary and its length:

The average flow velocity through a capillary:

But the viscosity of blood is higher than that of water:

Can blood be well represented as a Newtonian liquid? Not really.

d≈ 5m for most animals

p ≈ 20 mmHg ≈ 3000Pa
L ≈ 1 cm

v = p d2

32L
≈ 0.02cm/s ≈water=10−3Pa

 ≈ 3water  v≈0.007 cm/s too small!
vmeasured ≈ 0.05 cm/s
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Blood carries red blood cells and white blood cells (leukocytes)
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The Low Reynolds number World

The 100 years experiment with a 
very viscous fluid: 1 drop every
10 years!

This system has the same viscous
properties as water to the E. coli
bacterium.

What is a Reynolds number Re?
Re = intertial term of N.-S. Eq. /

   visocus term of N.-S. Eq.

For a rigid body of length L moving
with a speed U:

Re.N.= U2
/L

U/L2 =
LU


=
LU

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For small Reynolds numbers, the Navier-Stokes equation simplifies
into the Stokes equation: 

The meaning of Reynolds number can be found by comparing the 
kinetic energy to the work done by the viscous stress dissipation of
an object of linear dimension a and speed u (where u/a is the rate
of change of the fluid velocity):

Another way: compare the time needed to dissipate KE  of the fluid
element to the time needed to move a distance comparable to its size:

∇ p = ∇
2v incompressibility : ∇⋅v= 0

KE≈ a3u2 W ≈ 
u
a×a2

×a  Re.N. = KE
W =

au


viscous =
a2


≪ inertial =

a
u

 Re.N.=
viscous

inertial
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Flow around a sphere at different Reynolds numbers

The Stokes formula for a drag force on a sphere 
 

➔ need to integrate the viscous stress and the pressure over the surface
 of a sphere

➔ viscous stress proportional to the spatial derivative of the speed

➔ the area of the surface of the sphere:
➔ the Stokes force/drag  is then:  

v
R

4R2

FS = C
v
R×4R2

= 6R
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Stokes Drag in Single-Molecule Experiments

➔ ATP synthase is a  rotary motor

➔ actin filament attached to this
 motor is tagged by a fluorescent
 molecule

➔ when the motor rotates, the
 filament spins around and the
 fluorescent tag allows us to
 measure the rotation

➔ existence of pauses in molecular
 motors
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Molecular motor:
Motion of myosin on 
an actin filament

Position as a function of time
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Stokes Drag can be Neglected in Optical Tweezers Experiments

➔ can measure the speed of
 the motor as a function of
 the applied load

➔ How large is a drag force 
 due to a bead tethered to
 the motor?

➔ the bead: 1 m diameter

FS ≈ 6×10−3Ns /m2×5×10−7m×10−6m/s ≈ 10−2pN≪5pN
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Dissipative Time Scales and the Reynolds Number

Consider a damped harmonic oscillator and analyze its behavior 
at low Reynolds numbers:

A low Reynolds number means that the time scale over which the
kinetic energy dissipates is small:

(rate of dissipation on the right is a viscous force times velocity)
Thus we get a simple expression:

which means that we can neglect the inertial term in the equation
and get

m d2 x
dt2

 
dx
dt

 kx = 0

m dx /dt2

viscous
≈ dx /dt2

viscous =
m



dx
dt  k x = 0 with a solution: x t = x0 e

−k /  t
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Observation of stopping distances for objects of different sizes:
Consider a spherical object with initial velocity equal to a 

diameter of a sphere per second
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E. coli moves by rotating its flagella
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Helically shaped flagella with a diameter D and pitch P:

D ≈ 0.5m ...diameter of the helically shaped flagellum
P ≈ 2m ...pitch of the helix length of one helical turn

f ...propulsion frequency v = D f ... linear velocity

tan  =
D
P
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V =Df sincos ≈ 70m/s 30m/s exp. v = Df 

The propulsive force relies on the difference in the drag
coefficients between parallel and perpendicular motion of a rod:

➔ force parallel to the rod is:

➔ force perpendicular to the rod is:

➔ the total force projected onto the negative z-direction (direction 
 of motion) is then: 

➔ the propulsion force is balanced by the drag force:

➔ which results in the final speed of:

F∥= ∥v sin , where ∥= 2L

F
⊥
= 

⊥
v sin , where 

⊥
= 4L

Fp =− F∥cos  F⊥ sin

Fp =− 2L v sincos  4L v cos sin = 2L v sin cos

FD = 2L V
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Centrifugation and Sedimentation
➔ biochemical purification: to separate macromolecules or their 
 complexes from the solution

➔ centrifugation: a simple example of diffusion in the presence of
 drift using the Stokes formula

➔ What is centrifugation? Spinning at up to 100,000 rpm ~ 106 g

➔ the centrifugal force that all molecules in the solution experience:

 
➔ assume: the size of the sample much smaller than the distance 
                from the rotation axis

➔ The mass of the molecule in the solvent needs to be corrected by 
  the mass of displaced solvent:  

m2 r

m  P−V
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The centrifugal force imparts a drift velocity to the biomolecules
(low Reynolds numbers): centrifugal force equal to the frictional
Force:

The quantity           is quoted for different biomolecules in units of
Svedberg:

which corresponds to a globular protein with a radius of 1 nm in
water. Typical density of proteins:

The drift velocity is then a quadratic function of the size of the 
Biomolecule:

which allows for an effective separation of particles based on their
respective sizes.

vdrift =
mgc


for a sphereical molecule:  = 6R

m/

1svedberg = 10−13 s

1.35g/cm3

vdrift =
P−4 /3R3

6R
=

2P−

9
R2 gc
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Rate Zonal Versus Isopycnic Centrifugation

xc = vdrift t
x = 2D t
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Diffusion of biomolecules due to thermal fluctuations: a negative
effect on the separation. A condition for separation:

which shows that we just need to wait long enough for two types
of molecules to separate: 

However, a test tube has a finite length, so the separation needs
to occur before the molecules reach the bottom of the tube, that
is, the speed of spinning needs to be large enough:

The other separation method: isopycnic centrifugation relies on
a density gradient of the solvent and different densities of the
various macromolecules that needs to be separated.    

∣vdrift1−vdrift2∣t2D12D2 t

tsep = 2D12D2

∣vdrift1−vdrift2∣ 
2

vdrift tsepL  gc 
1
L

m1

1  2D12D2

m1/1−m2/ 2

2
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