Lectures 11-13: Electrostatics of Salty Solutions

Lecturer: Brigita Urbanc Office: 12-909 (E-mail: *brigita@drexel.edu*)

Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011-2012/

10/27 & 11/01 & 11/08 PHYS 461 & 561, Fall 2011-2012

Water as a medium of life: H₂O dissociation into H⁺ and OH-

- → in pure water: 1 H₂O molecule out of 10⁷ is dissociated
- \rightarrow definition of the pH = log₁₀ [H⁺]
- → thus, for pure water pH = 7
- → the presence of ions or other molecules in H₂O can change pH
- different amino acids can donate or accept H⁺, thus their charged state depends on pH and that affects the protein structure
 example of an influenza virus uptake by a cell:

Figure 9.1 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Variation of pH inside the body:

- pH of the blood is at 7.3
- inside the cell, e.g. lysosome (protein degradation) pH<4
- cells manipulate pH by $\mathbf{H}^{\!\!+}$ transport across the membrane
- in bacterium: 2 x 10^{10} H₂O molecules 10^7 ions (mM concentrations): Na⁺, K⁺, ...
- equilibrium constant and pH: charge separation in H₂O dictated by a competition between energetic and entropic effects

 $H_2O \leftrightarrow H^+ + OH_-$

10/27 & 11/01 & 11/08

- → law of mass action using $V_{HO} = -1$, $V_{H^{+}} = 1$, $V_{CH} = 1$: $[H^{+}] [OH^{-}] / [H_{2}O] =$ $[H^{+}]_{0} [OH^{-}]_{0} / [H_{2}O]_{0} exp[-β(\mu_{H^{+}}^{0} + \mu_{CH}^{0} - \mu_{HO}^{0})]$
- \rightarrow [A]₀ ... the concentration of species A in some *standard state* $\rightarrow \mu_{\lambda}^{0}$... the chemical potential of species A in the standard state → pure water: presence of H+ is due to dissociation only $[H^+] = [OH^-]$ $[\mathbf{H}, \mathbf{O}] = [\mathbf{H}, \mathbf{O}]_{0}$ (only 1 in 10⁷ molecules dissociated) $[H_{2}O]_{0} = 55 \text{ M}; \ [H^{+}]_{0} = [OH^{-}]_{0} = 1\text{ M};$ $\mu_{\rm H^{+}}^{0} + \mu_{\rm CH}^{0} - \mu_{\rm H^{-}}^{0} = 79.9$ kcal/mol $[H^+] [OH^-] = [H^+]^2 = 1.0 \times 10^{-14} M^2 \rightarrow [H^+] = 10^{-7} M$

An average distance between the H+ ions as a function of pH

Figure 9.2 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

The charge state of macromolecules M and the pH of the solution $HM \leftrightarrow H^+ + M^-$

Dissociation constant K_d:

$$\mathbf{K}_{\mathbf{d}} = [\mathbf{H}^{+}][\mathbf{M}^{-}]/[\mathbf{H}\mathbf{M}]$$

A measure of the tendency of a macromolecule to undergo the dissociation reaction is known as pK of the molecule:

$$\mathbf{pK} = -\log_{10} \mathbf{K}_{d}$$

Henderson-Hasselbalch equation:

$$pH = pK + log_{10} \{ [M^{-}]/[MH] \}$$

pK is equal to pH, at which half of macromolecules has dissociated. For example:

- **pK** =1 for **DNA**;

- at pH=7, the phosphates on the DNA backbone dissociated (each phosphate group carries 2 negative charges)
- different amino acids have different pK values

Salt concentration dependence of equilibrium constants K:(A) binding of Lac repressor to nonspecific DNA(B) binding of bovine pancreatic ribonuclease to DNA

10/27 & 11/01 & 11/08

Electrostatics for Salty Solutions: Review of EIs between charges

- a force between two charges q_1 and q_2 :

$$F = (4\pi\epsilon_0 D)^{-1} q_1 q_2/r^2$$

- D ... a dielectric constant (D=1 for vacuum or air, D=80 for water)
- water molecules are polar, they arrange with respect to a local electric field

Figure 9.4 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

$$\mathbf{E}(\mathbf{r}) = (4\pi\varepsilon_0 D)^{-1} \ Q/r^2 \mathbf{e}$$

$$E_{TOT}(\mathbf{r}) = \sum_{i} E_{i} = \sum_{i} E(\mathbf{r} - \mathbf{r}_{i}) \rightarrow \text{superposition}$$

Instead of discrete distribution of charges (which results in individual electric fields), we will introduce continuous charge distribution $\rho(\mathbf{r})$ within a small volume ΔV

$$\Delta \mathbf{Q} = \boldsymbol{\rho}(\mathbf{r}) \, \Delta \mathbf{V}$$

10/27 & 11/01 & 11/08

Electric field caused by A) a single charge, B) three charges, C) a local charge density

Figure 9.6 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Figure 9.5 Physical Biology of the Cell (© Garland Science 2009)

The relationship between the charge density and the electric field using the concept of the flux Φ of the electric field (flux = the # of electric field lines per unit area, perpendicular to the field direction): $\Phi = \int \mathbf{E}(\mathbf{r}) \mathbf{n} \, d\mathbf{A} = \int (4\pi\epsilon_0 D)^{-1} Q/r^2 \mathbf{e}_r \mathbf{e}_r \, d\mathbf{A} = Q/(\epsilon_0 D)$

Electric Flux and Gauss's Law

Figure 9.7 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Let the charge density depend only on x: Calculate the flux through a closed surface:

$$\Phi = E_x(x + \Delta x) \Delta y \Delta z - E_x(x) \Delta y \Delta z = dE_x/dx \Delta x \Delta y \Delta z$$

so the Gauss's law is expressed as:

$$dE_{x}(x) / dx = \rho(x) / D\varepsilon_{0}$$

or in general E=E(x,y,z)for each component x,y,z:

 $\partial \mathbf{E}_{\mathbf{x}} / \partial \mathbf{x} + \partial \mathbf{E}_{\mathbf{y}} / \partial \mathbf{y} + \partial \mathbf{E}_{\mathbf{z}} / \partial \mathbf{z} =$ $\rho(\mathbf{x}) / D \mathbf{E}_{0}$ the most general form of Gauss's law.

Figure 9.8 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

From the electric field E(r) description to the electrostatic potential V(r)

V(r) ... electrostatic potential = work per unit charge done to bring a test charge from infinity to r very slowly

10/27 & 11/01 & 11/08

For each component of **E**(**r**):

$$(E_{x}(x,y,z), E_{y}(x,y,z), E_{z}(x,y,z)) = (-\partial V(x,y,x)/\partial x, -\partial V(x,y,x)/\partial y, -\partial V(x,y,x)/\partial z)$$

Express the relationship between $V(\mathbf{r})$ and $\mathbf{E}(\mathbf{r})$ into Gauss's law:

$$\partial^2 V(x,y,x)/\partial x^2 + \partial^2 V(x,y,x)/\partial y^2 + \partial^2 V(x,y,x)/\partial z^2$$

= $-\rho(x,y,x)/(D\epsilon_0)$

We derived the Poisson equation that relates electrostatic potential to the charge density.

$$\nabla^2 V(\mathbf{r}) = -\rho(\mathbf{r})/(D\varepsilon_0)$$

 ∇^2 ... Laplacian of the scalar function $V(\boldsymbol{r})$

10/27 & 11/01 & 11/08 PHYS 461 & 561, Fall 2011-2012

Energy cost associated with assembly a charged sphere - for a general charge distribution:

$$U_{HL} = \frac{1}{2} \sum q_i V_i = \frac{1}{2} \int V(r) \rho(r) d^3r$$

(bring charge 1 to the vicinity of charge 2
and the other way around $\rightarrow \frac{1}{2}$)
for a sphere (to the right):
 $dU_{HL} = V(r) dq$
 $V(r) = \int_r^{\infty} E(r') dr' = q/(4\pi\epsilon_0 D) \int_r^{\infty} r'^2 dr$
 $= q/(4\pi\epsilon_0 Dr)$
 $dU_{HL} = V(r) dq$
 $= 1/(4\pi\epsilon_0 Dr) \rho 4/3\pi r^3 \rho 4\pi r^2 dr \rightarrow$
 $U_{HL} = \int_0^R 16\pi^2 \rho^2/(12\pi\epsilon_0 D) r^4 dr$
 $= 3Q^2/(20\pi\epsilon_0 DR)$

Figure 9.10 Physical Biology of the Cell (© Garland Science 2009)

What is an energy cost of separation of two charges (a) in vacuum and (b) in water?

- in water the charges are largely free (non-interacting)

Bjerrum length l_{B} = length at which the electrostatic interaction energy between two oppositely charged charges is equal to the thermal energy $k_{B}T$: $e^{2}/(4\pi\epsilon_{0}DI_{B}) = k_{B}T$ or

 $I_B = e^2/(4\pi\epsilon_0 D k_B T) \sim 0.7 \text{ nm} \text{ (in water with D=80)}$

Figure 9.11 Physical Biology of the Cell (© Garland Science 2009)

A simple globular protein = a ball of radius R made of amino acids: small beads with radii r

- all hydrophobic residues: inside the ball
- all polar (hydrophilic) residues: on the surface
- each of polar residues can release one unit charge into the solution

What is the self energy of the sphere if all charge is concentrated on a shell of radius R? - if the # of polar residues as a function of R is Q_T, then:

$$U = Q_T^2 / (4\pi\epsilon_0 D2R)$$
$$Q_T = Ne = (4\pi R^2 / \pi r^2) e$$

$$U = e^{2} / (4\pi \varepsilon_{0}^{} D) 8 R^{3} / r^{4}$$

= k_{B}^{} T 8 R^{3} I_{B}^{} / (Dr^{4})

Figure 9.12 Physical Biology of the Cell (© Garland Science 2009)

Energy cost to charge a protein:

- $I_{\rm B} \sim 0.7 \ \rm nm$
- r ~ 0.5 nm
- U = $k_B T R^3 8x 0.7/(0.5)^4$ for R [nm]

Figure 9.13 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Electrostatics in Salty Solutions: Negatively Charged DNA in Ionic Solution with Counterions

- salty solutions are physiologically relevant
- DNA backbone is negatively charged
- positive ions in solution form a screening cloud because it lowers their electrostatic energy

Figure 9.14 Physical Biology of the Cell (© Garland Science 2009)

In equilibrium the chemical potential away from the cloud is: $\mu = \mu_0 + k_B T \ln(c_{\infty}/c_0)$

The chemical potential of an ion inside the cloud:

$$\mu = \mu_0 + k_B T \ln[(c_{\infty} + \frac{1}{2} \Delta c)/c_0] + e V$$
$$= \mu_0 + k_B T \ln(c_{\infty}/c_0)$$

The two chemical potentials are the same in equilibrium: $k_B T \ln(c_{\infty}/c_0) = k_B T \ln[(c_{\infty} + \frac{1}{2} \Delta c)/c_0] + eQ\lambda_D/(2D\epsilon_0A)$ So assuming that $\Delta c \ll c_{\infty}$ we can write

$$\ln(c_{\infty} + \frac{1}{2}\Delta c) - \ln(c_{\infty}) = \ln(1 + \frac{1}{2}\Delta c/c_{\infty}) \sim \frac{1}{2}\Delta c/c_{\infty})$$

and obtain the Debye screening length λ_D expressed by I_B :

$$\lambda_{\rm D} = (4\pi I_{\rm B} c_{\infty})^{-1/2}$$

Remember that $I_B = e^2/(4\pi\epsilon_0 Dk_B T)$... Bjerrum length

The Poisson-Boltzmann Equation

- Poisson Eq.: relates the EI potential to the charge density
- Boltzmann distribution: probability of different microstates
- far from the biomolecule:

 $c_{\text{positive}} = c_{\text{negative}} = c_{\infty}$

- consider a negatively charged

membrane with σ as a charge per unit area: only variation in the x-direction

$$C_{\text{positive}}(\mathbf{x}) = C_{\infty} e^{-\beta z e V(\mathbf{x})}$$
$$C_{\text{negative}}(\mathbf{x}) = C_{\infty} e^{+\beta z e V(\mathbf{x})}$$

- $\pm zeV(x)$... the EI energy of \pm ions

The total charge density $\rho(\mathbf{x})$: $\rho(\mathbf{x}) = z \in C_{\text{positive}}(\mathbf{x}) - z \in C_{\text{negative}}(\mathbf{x})$ is related to the electric potential through the Poisson equation: $\frac{d^2 V(\mathbf{x})}{dx^2} = \frac{-\rho(\mathbf{x})}{D\varepsilon_0}$

$$\frac{d^2 V(x)}{dx^2} = \frac{z e C_{\infty}}{D \varepsilon_0} \cdot \left[e^{+\beta z e V(x)} - e^{-\beta z e V(x)} \right]$$

When the charge density on a biomolecule does not produce a too large electric potential V(x), we can use a linearized form:

$$\frac{d^2 V(x)}{dx^2} = \frac{2 z^2 e^2 c_{\infty}}{D \varepsilon_{\cdot} k_{\rm B} T} V(x)$$

Known as the Debye-Huckel equation. Solution is well-known:

$$V(\mathbf{x}) = \mathbf{A} e^{-\mathbf{x}/\lambda_{D}} + \mathbf{B} e^{+\mathbf{x}/\lambda_{D}} \qquad \lambda_{D} = \sqrt{\frac{\mathsf{D}\varepsilon_{0}\mathsf{k}_{\mathsf{B}}\mathsf{T}}{2z^{2}e^{2}\mathsf{C}_{\infty}}} \qquad \begin{array}{c} \textbf{Debye screening} \\ \textbf{length} \\ \textbf{10/27 \& 11/01 \& 11/08} \qquad PHYS 461 \& 561, Fall 2011-2012 \end{array} \qquad \begin{array}{c} \mathbf{D}\varepsilon_{0}\mathsf{k}_{\mathsf{B}}\mathsf{T} \\ \textbf{2}z^{2}e^{2}\mathsf{C}_{\infty} \\ \textbf{2}z^{2}e^{2}\mathsf{C}_{\infty} \end{array}$$

Solution:

$$V(\mathbf{x}) = \frac{\sigma \lambda_{\mathrm{D}}}{\mathrm{D}\varepsilon_{0}} \mathrm{e}^{-\mathbf{x}/\lambda_{\mathrm{D}}}$$
$$\rho(\mathbf{x}) = \frac{-\sigma}{\lambda_{\mathrm{D}}} \mathrm{e}^{-\mathbf{x}/\lambda_{\mathrm{D}}}$$

For a charged protein in a salt solution with charge density $c_{\infty} = 200 \text{ mM}$ (typical for potassium ions inside a cell), $\lambda_D = 0.7 \text{ nm}$

Viruses as Charged Spheres in a Salty Solution: Debye-Hückel Model

What are viruses?

- → virus: an example of a macromolecular assembly of sizes ~10s to ~100s of nanometers
- > highly ordered and symmetrical objects made of proteins and nucleic acids
- *capsid*: protein shell (repetitive packing of the same protein unit resulting in icosahedron: 12 vertices, 20 faces each with 3 edges)
- *viral genome*: once in a host cell, command the construction of its own inventory of parts that further assemble into virus copies

Examples of Viral Capsid Structures

HIV virus (electron micrograph)

100 nm

Figure 2.19 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Figure 2.20 Physical Biology of the Cell (© Garland Science 2009)

The energy cost for assembling a spherical shell of charge Q and radius R is: $\frac{1}{2}$ QV(R)

V(R) ... the potential on the surface of the sphere For spherically symmetric charge distribution, the flux:

$$\Phi(\mathbf{r}) = \mathsf{E}_{\mathbf{r}}(\mathbf{r}) 4 \pi \mathbf{r}^2$$

The charge within a sphere of radius r is: $q(r) = \int_0^r \rho(r') 4 \pi r'^2 dr'$

Using Gauss's law relating the flux and the charge: $\Phi(r) = \frac{q(r)}{D \varepsilon_0}$

We then get the Poisson equation for a spherically symmetric case: $\frac{1}{r} \frac{d^{r}[r V(r)]}{dr^{2}} = \frac{-\rho(r)}{D\epsilon_{0}}$

Using linearized version of the Boltzmann equation:

$$\rho(\mathbf{r}) \approx \frac{-2 \mathbf{z}^2 \mathbf{e}^2 \mathbf{c}_{\infty}}{\mathbf{k}_{\rm B} \mathbf{T}} \mathbf{V}(\mathbf{r})$$

10/27 & 11/01 & 11/08

We then derive the Debye-Hückel equation:

 $\frac{d^{r}[r V(r)]}{dr^{2}} = \frac{rV(r)}{\lambda_{D}^{2}} \qquad \qquad \lambda_{D} \dots \text{ the Debye screening length}$ Known solution for the function rV(r) is: $V(r) = A \frac{e^{-r/\lambda_{D}}}{r}$

The constant A is determined by taking into account that

$$\left(\frac{d V(r)}{dr}\right)_{r=R} = E(R) = \frac{Q}{4\pi\varepsilon_0 D R^2} \qquad A = \frac{Q e^{R/\lambda_D}}{4\pi D(1 + \frac{R}{\lambda_D})}$$
$$V(R) = \frac{1}{4\pi\varepsilon_0 D} \left(\frac{Q}{R}\right) \frac{\lambda_D}{R + \lambda_D}$$

The electrostatic energy of the spherical shell (virus capsid):

$$U(R) = \frac{1}{2} QV(R) = \frac{1}{2} k_{B} T \left(\frac{Q}{e}\right)^{2} \frac{l_{B} \lambda_{D}}{R(R + \lambda_{D})}$$

10/27 & 11/01 & 11/08

Capsomers arranged into a triangular face of the icosahedral capsid are held together by hydrophobic forces that need to overcome the electrostatic interactions ($\mathbf{Q} = \mathbf{N} \mathbf{z} \mathbf{e} \, \mathbf{\&} \, \mathbf{R} + \lambda_{\mathbf{D}} \sim \mathbf{R}$): $\Delta G_{\text{capsid}} = \Delta G_{\text{contact}} + \frac{1}{2} \mathbf{k}_{\text{B}} T \frac{N^2 z^2 \mathbf{I}_{\text{B}} \lambda_{\text{D}}}{R^2}$ Salt concentration dependence is via the Debye screening length λ_{D}

Salt concentration dependence is via the Debye screening length λ_D .10/27 & 11/01 & 11/08PHYS 461 & 561, Fall 2011-201230

Equilibrium constant can be measured and compared to:

$$\ln K_{\text{capsid}} = \frac{-\Delta G_{\text{capsid}}}{k_{\text{B}}T} = \frac{-\Delta G_{\text{contact}}}{k_{\text{B}}T} - \frac{1}{2}N^{2}z^{2}\frac{I_{\text{B}}\lambda_{\text{D}}}{R^{2}}$$

 measured equilibrium constant = concentration of capsids in solution as a function versus concentration of capsomers squared

temperature dependence:
 (hydrophobic effect)

Figure 9.18 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08

Equilibrium constant depends on the salt concentration:

$$\ln K_{capsid} \propto \frac{l}{\sqrt{c}}$$

Figure 9.19 Physical Biology of the Cell (© Garland Science 2009)

10/27 & 11/01 & 11/08