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Water as a medium of life: H
2
O dissociation into H+  and OH-

➔ in pure water: 1 H
2
O molecule out of 107 is dissociated

➔ definition of the pH = - log
10

 [H+]
➔ thus, for pure water pH = 7
➔ the presence of ions or other molecules in H

2
O can change pH

➔ different amino acids can donate or accept H+, thus their charged
 state depends on pH and that affects the protein structure

➔ example of an influenza virus uptake by a cell:
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Variation of pH inside the body:

- pH of the blood is at 7.3

- inside the cell, e.g. lysosome (protein degradation) pH<4

- cells manipulate pH by H+ transport across the membrane

- in bacterium: 2 x 1010  H
2
O molecules

                                 107 ions (mM concentrations): Na+, K+, …

- equilibrium constant and pH: charge separation in H
2
O

  dictated by a competition between energetic and entropic
        effects

H
2
O ↔  H+ + OH-
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➔ law of mass action using 
H2O

 = -1,  
H+

 =1, 
OH-

 = 1:

  [H+] [OH-] / [H
2
O] = 

[H+]
0
 [OH-]

0
 / [H

2
O]

0 
exp[-(

H+

0 + 
OH-

0 – 
H2O

0)]

➔ [A]
0
 … the concentration of species A in some standard state

➔ 
A

0 … the chemical potential of species A in the standard state
➔ pure water: presence of H+ is due to dissociation only

[H+] = [OH-]
[H

2
O] = [H

2
O]

0 
(only 1 in 107 molecules dissociated)

[H
2
O]

0 
= 55 M;  [H+]

0
 = [OH-]

0
 = 1M; 


H+

0 + 
OH-

0 – 
H2O

0= 79.9 kcal/mol

[H+] [OH-] =  [H+]2 = 1.0 x 10-14  M2 → [H+] = 10-7  M
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An average distance between the H+ ions as a function of pH
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The charge state of macromolecules M and the pH of the solution
HM ↔ H+ + M-

Dissociation constant K
d
:

K
d 
= [H+][M-]/[HM]

A measure of the tendency of a macromolecule to undergo the 
dissociation reaction is known as pK of the molecule:

pK = - log
10

 K
d
 

Henderson-Hasselbalch equation:
pH = pK + log

10
 {[M-]/[MH]} 

pK is equal to pH, at which half of macromolecules has dissociated.
For example: 

- pK =1 for DNA; 
- at pH=7, the phosphates on the DNA backbone dissociated

         (each phosphate group carries 2 negative charges)
- different amino acids have different pK values
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Salt concentration dependence of equilibrium constants K:
(A) binding of  Lac repressor to nonspecific DNA 
(B) binding of bovine pancreatic ribonuclease to DNA

the larger the K, the higher the binding probability
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Electrostatics for Salty Solutions: Review of EIs between charges
- a force between two charges q

1
 and q

2
:

F = (4
0
D)-1  q

1
 q

2
/r2

- D … a dielectric constant (D=1 for vacuum or air, 
                  D=80 for water)

- water molecules are polar, they arrange with respect to a
        local electric field
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E(r) = (4
0
D)-1  Q/r2 e

E
TOT

(r) = ∑
i
 E

i
 = ∑

i
 E(r – r

i
) → superposition

Instead of discrete distribution of charges (which results in
individual electric fields), we will introduce continuous 

charge distribution (r) within a small volume V 

Q = (r) V 
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Electric field caused by A) a single charge, B) three charges,
C) a local charge density



PHYS 461 & 561, Fall 2011-2012 1110/27 & 11/01 & 11/08

The relationship between the charge density and the electric field 
using the concept of the flux   of the electric field (flux =the # of 
electric field lines per unit area, perpendicular to the field direction):

=  ∫E(r) n dA =  ∫ (4
0
D)-1  Q/r2 e

r
 e

r
 dA = Q/(

0
D)
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Electric Flux and Gauss's Law

point charge 
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Let the charge density depend only on x: Calculate the flux
through a closed surface:

  = E
x
(x + x) y z – E

x
(x) y z = dE

x
/dx x y z

so the Gauss's law is expressed as:

dE
x
(x) /dx = (x)/D

0

or in general E=E(x,y,z)
for each component x,y,z:

∂E
x
/∂x + ∂E

y
/∂y + ∂E

z
/∂z =

(x)/D
0

the most general form of Gauss's law.
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`

From the electric field E(r) description 
to the electrostatic potential V(r)

V(r) … electrostatic potential = work per unit charge done to 
             bring a test charge from infinity to r very slowly

Example in 1D: 

E(x) as a result of a
charge distribution
(x):

V(x) = ∫
x

∞-(E
x
(x') e

x
) -(e

x
 dx')

         = ∫
x

∞  E
x
(x') dx'

E
x
(x) = dV(x)/dx
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For each component of E(r):

(E
x
(x,y,z), E

y
(x,y,z), E

z
(x,y,z)) =

(-∂V(x,y,x)/∂x, -∂V(x,y,x)/∂y, -∂V(x,y,x)/∂z)

Express the relationship between V(r) and E(r) into Gauss's law:

∂2V(x,y,x)/∂x2 + ∂2V(x,y,x)/∂y2 + ∂2V(x,y,x)/∂z2 
= -(x,y,x)/(D

0
)

We derived the Poisson equation that relates electrostatic potential
to the charge density.

∇2V(r) = -(r)/(D
0
)

∇2 … Laplacian of the scalar function V(r)
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Energy cost associated with assembly a charged sphere
- for a general charge distribution:

U
EL

 = ½ ∑ q
i
V

i
 = ½ ∫ V(r) (r) d3r

(bring charge 1 to the vicinity of charge 2
 and the other way around → ½ )

- for a sphere (to the right):
dU

EL
 = V(r) dq

V(r) =  ∫
r

∞ E(r')dr' = q/(4
0
D) ∫

r

∞ r'-2  dr'

= q/(4
0
Dr)

dU
EL

 = V(r) dq 

= 1/(4
0
Dr)4/3r3 4r2dr → 

U
EL

 =  ∫
0

R 16/(12
0
D) r4dr 

=  3Q2/(20
0
DR) 
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What is an energy cost of separation of two charges (a) in 
vacuum and (b) in water?

- in water the charges are largely free (non-interacting)

Bjerrum length l
B
 = length at which the electrostatic interaction 

energy between two oppositely charged charges is equal to the 

thermal energy k
B
T: e2/(4

0
DI

B
) = k

B
T or

I
B
 = e2/(4

0
D k

B
T) ~ 0.7 nm (in water with D=80)
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A simple globular protein = a ball of radius R made of amino acids: 
small beads with radii r
- all hydrophobic residues: inside the ball
- all polar (hydrophilic) residues: on the surface 
- each of polar residues can release one unit charge into the solution

What is the self energy of the sphere if all 
charge is concentrated on a shell of radius R?
- if the # of polar residues as a function of
  R is Q

T
, then: 

U =  Q
T

2/(4
0
D2R)

Q
T
 = Ne = (4R2/r2) e

U = e2/(4
0
D) 8 R3/r4

    = k
B
T 8R3I

B
/(Dr4)



PHYS 461 & 561, Fall 2011-2012 1910/27 & 11/01 & 11/08

Energy cost to charge a protein:
- I

B
 ~ 0.7 nm

- r ~ 0.5 nm
- U = k

B
T R3 8x 0.7/(0.5)4 for R [nm] 
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Electrostatics in Salty Solutions: 
Negatively Charged DNA in Ionic Solution with Counterions

- salty solutions are 
  physiologically relevant
 
- DNA backbone is 
  negatively charged

- positive ions in solution
  form a screening cloud
  because it lowers their
  electrostatic energy

- the thickness of the “cloud”:
  interplay between lower EI energy and entropy loss
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ESTIMATE: The size of the screening cloudD

- concentration of + ions:

   where  
- the net charge of the screening cloud:

 
(A … surface area of the biomolecule)

- the total charge of a biomolecule and
  the surrounding cloud is zero

- electric field: 

- electric potential:

cpositive=c∞
1
2
c

c=cpositive−cnegative

Q=ecAD

c=
Q
e

1
AD

Q
e
=no.charges

E=
Q

D0A

V=
QD

2D0A
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In equilibrium the chemical potential away from the cloud is:

  = 0 + kBT ln(c∞/c0)
The chemical potential of an ion inside the cloud:

  = 0 + kBT ln[(c∞+ ½ c)/c0] + e V

= 0 +  kBT ln(c∞/c0)
The two chemical potentials are the same in equilibrium:

kBT ln(c∞/c0) = kBT ln[(c∞+ ½ c)/c0] + eQD/(2D0A)

So assuming that c « c∞  we can write
ln(c∞+ ½ c) – ln(c∞) = ln(1+ ½ c/c∞) ~ ½ c/c∞)

and obtain the Debye screening length D expressed by IB:

 D = (4IBc∞)-1/2  

Remember that  IB= e2/(4DkBT) … Bjerrum length
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The Poisson-Boltzmann Equation
 
- Poisson Eq.: relates the EI 
  potential to the charge density
- Boltzmann distribution: 
   probability of different microstates
- far from the biomolecule:

- consider a negatively charged 

   membrane with   as a charge
   per unit area: only variation in
   the x-direction

- ±zeV(x) … the EI energy of ± ions

cpositive=cnegative=c∞

cpositivex=c∞e−zeV x

cnegative x=c∞ezeV x
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The total charge density (x): 
is related to the electric potential through the Poisson equation:

Resulting in the non-linear differential equation for salty solution
which is the Poisson-Boltzmann equation:

When the charge density on a biomolecule does not produce a too 

large electric potential V(x), we can use a linearized form:

Known as the Debye-Huckel equation. Solution is well-known:
Debye screening

length

x=zecpositivex−zecnegative x

d2Vx 

dx2
=
−x 
D0

d2Vx 

dx2
=
zec∞
D0

⋅[ezeV x
−e−zeV x ]

d2Vx
dx2

=
2z2e2c∞
D0kBT

V x

Vx=A e
−x /

DBe
x/

D D=D0kBT

2z2e2c∞
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Solution:

For a charged protein in a salt solution with charge density 
c∞ = 200 mM (typical for potassium ions inside a cell), 

D=0.7 nm

Vx=
D

D0

e
−x /

D

x=−
D

e
−x /

D
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Viruses as Charged Spheres in a Salty Solution: 
Debye-Hückel Model

What are viruses?
➔ virus: an example of a macromolecular assembly of sizes ~10s
 to ~100s of nanometers

➔ highly ordered and symmetrical objects made of proteins and
 nucleic acids
 

➔ capsid: protein shell (repetitive packing of the same protein 
 unit resulting in icosahedron: 12 vertices, 20 faces each with
 3 edges)

➔ viral genome: once in a host cell, command the construction
 of its own inventory of parts that further assemble into virus
 copies
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Examples of Viral
Capsid Structures

HIV virus
(electron micrograph)
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The energy cost for assembling a spherical shell of charge Q and
radius R is: 

V(R) ... the potential on the surface of the sphere 
For spherically symmetric charge distribution, the flux:

The charge within a sphere of radius r is:

Using Gauss's law relating the flux and the charge: 

We then get the Poisson equation for a spherically symmetric case:

Using linearized version of the Boltzmann equation:

1
2
QV R

r=Err4 r
2

qr=∫0
r r '4r '2dr '

r=
qr
D0

1
r
d2
[r Vr]
dr2 =

−r
D0

r≈
−2z2e2c∞
kBT

V r
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We then derive the Debye-Hückel equation:

D … the Debye screening length

Known solution for the function rV(r) is:

The constant A is determined by taking into account that 

The electrostatic energy of the spherical shell (virus capsid):

 

d2
[r V r]
dr2 =

rV r
D

2

Vr=A
e
−r /

D

r

dVrdr r=R=ER=
Q

40DR
2 A=

Qe
R /

D

4D1
R
D



V R=
1

40D QR
D

RD

UR=1
2
QV R=1

2
kBT Qe 

2 IBD
R RD
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Capsomers arranged into a triangular face of the icosahedral capsid
are held together by hydrophobic forces that need to overcome the

electrostatic interactions (Q = N z e & R +D ~ R):

Salt concentration dependence is via the Debye screening length D.

Gcapsid=Gcontact
1
2
kBT

N2z2IBD
R2
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Equilibrium constant can be measured and compared to:

➔ measured equilibrium
constant  = 

   concentration of capsids
   in solution as a function

versus 
    concentration of 
    capsomers squared

➔ temperature dependence:
 (hydrophobic effect)

lnKcapsid=
−Gcapsid

kBT
=
−Gcontact

kBT
−

1
2
N2z2 IBD

R2
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Equilibrium constant depends on the salt concentration:

lnKcapsid∝
1

c
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