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Boltzmann distribution (by counting: Textbook, pages 230-231)

Information theory:
based on the constraints (for example the total energy) derive the
least biased probability distribution

Shannon entropy:
— N
where pi is the probability of the system to be in the i-th microstate.

For example, if nothing is known about the system except that there
is N microstates, then for all P.= 1/N and S = In N (the maximal

value).

How do we formally derive this result?
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Maximize Shannon entropy S' using Lagrange multiplier method for
each constraint:

S'=-%, pnp, —A[X, " p —1]

Maximization equations:

0SVA=0 — -y Np +1=0

0S'/op=0 — —Inp —1-A=0
p. = exp(—1-A)

Note that the probabilities pi do not depend on i!
> N p =1- Y ~exp-1-A) =1— exp(~1-A) = 1/N

p. = /N

1
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Boltzmann distribution is a maximum entropy distribution
with a fixed average energy:

S'=->plInp-— Al >.p.— 1] - Bl >.pE —E]

_lnpi—l—l—ﬁEF 0 —p= exp(—1-A) exp(—[SEi)
. p,=1 — exp(1+}) = 3, exp(-BE) = Z

p,= exp(-BE) / Y exp(-BE)
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Ideal gas approximation: the interaction range is small in
comparison to the mean spacing between molecules

For a system with N independent variables (Xl, Xy9 o0 XN)
the probability distribution can be factorized:
P(x,x,...x)=Px) P(x) ... P(x))

— uniform spatial distribution of
ideal gas molecules.

Microscopic state of the system is
described by (X, px) so the key

information that we need to derive
is P(px) knowing the Kinetic © o

energy of K = pxz/ (2m). 9/
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Probability distribution for a system with average energy is:

exp[-Bp_/(2m)]

P(p) =
Y. exp[-Bp /(2m)]

Instead of a sum, we use an integral over a continuous variable P :
X

Zm — Imw dpx

where we will use the integral:

fmoo exp(-ap *) dp = 1t/ o
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According to the equipartition theorem, each degree of freedom
is associated with :

E> = kBT

Calculate <E> using the Boltzmann distribution:

Z=] ”exp[-Bp /(2m)] dp = V2mm/B
E> = fmw pxz/(Zm) exp [-Bpxz/(Zm)] dp_

We use the following trick:
EBr=-Z" 02/ = v B
so we showed that the Lagrange multiplier B = (kBT)_1 .
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Free energy and chemical potential of a dilute solution:
Application of a lattice model (and ideal gas approx.)

(A) solute (B) (C)

D
e

solvent
(water)

Figure 6.20 Physical Biology of the Cell (© Garland Science 2009)

10/11/2011 PHYS 461 & 561, Fall 2011-2012



Configurational entropy of N objects placed into W available spots:

Q!
WN,Q) = S=k_ InW

N! (Q — N)!

How to calculate the chemical potential of a dilute solutions?

L. =G /0NS)Tp
G =N u" +N e -TS
\%4 \%4 S S MX

10
water G + solute energy + mixing entropy contribution

Mixing entropy contribution:
-independent solute molecules (ideal gas)

-lattice model: NW + NS is a total number of lattice sites

W ,N)=(N_ +N)!/(N !N
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S=Kk_ InW=In[(N_ +N)!/ (N ! NI]~=
— kN, InINC/(NG + N+ N In[N /AN + NI =
— kK IN,, In(1-N/N_)+ N In(N/NO)J

W S W S S W

Taking into account the Taylor expansion of In(1+x) = x, we get:

S =— K IN.In(N/N_)— N
G . (T,p,N_,N)= N_ uw"+ N.€ (T,p) +
k T(N, In(N/N_)— N)
u(T,p)= € (T,p) + k. T In(c/c)

or in a general form expressed in concentration ¢c=N/V:

_= U + kBT ln(ci/ciﬂ)
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Osmotic pressure Is an Entropic Effect

> consider a cell in an aqueous environment exchanging material
with a solution (intake of food, excretion of waste)

> chemical potential difference proportional to AG:

AG = (].Ll — ].LZ) dN < 0 (spontaneous)

> cell with a crowded environment of biomolecules: tendency of
almost all components to move out causes a mechanical pressure
called osmotic pressure

> lipid membranes with ion channels to regulate ion concentration

> calculate osmotic pressure due to a dilute solution of N molecules
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Osmotic pressure on a semipermeable membrane, which only
allows water molecules through

solution solution of H,0
of H,0 + macromolecules

O,
— @@g UQ

ll(o °}}
/J

{(#) O)),

D @ 0
W On

semipermeable
membrane

Figure 6.21 Physical Biology of the Cell (© Garland Science 2009)
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1 (Tp) =(0G, I0N,), =
p '(T,p)— k TN/N_

For both sides of the membrane in equilibrium:

H WO(T’pl) = H WO(T’pz) B kBT NS/NW

Expand the chemical potential at P, around the P value:

n,'(T,p) = p '(T,p)+ (0p,"/0p) (p,-P,)
and consider that (5],lw0/ 0p) =V = NW/V is volume per

water molecule so that

(p2 —~ pl) = kBT NS/V
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Measuring interstrand interactions in DNA using osmotic pressure

7
polyethylene glycol
T B
B, R 2 . e
o) 0 e e
@ 56 \‘s\&QO \\s
g & ¢ An %+ o
g e
5
20 25 30 35 40 45

interaxial spacing (A)

DNA rods

Figure 6.22 Physical Biology of the Cell (© Garland Science 2009) Figure 6.23 Physical Biology of the Cell (© Garland Science 2009)

pressure: p(ds) = Fo exp(-ds/ C)

ds ... Interstrand spacing; F0 depends on the ionic solution
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Law of Mass Action and Equilibrium Constants
(Chemical Reactions)

> chemical equilibrium between A, B and their complex AB:

A+B e AB

> final equilibrium independent of whether we start with only A and
B, or with a high concentration of AB and no A or B

> NA, NB, NAB ... number of A, B, and AB molecules

3> In equilibrium: dG =0
0=(3G/0N ) AN +(9G/oN ) dN_+ (0G/oN ) dN

> A more convenient and general expression:

ZHN uidNi =0
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Stoichiometric coefficients for each of the reactants are defined as:
v = =1
1

depending on whether the number of particles of the i-th type
increases or decreases during the reaction:

ZHN uivi =0

> m v =—KT3 " lIn(c/c )"

1

_BZH 0 !'l'i() Vi = ln[Hi=1 0 (ci/cio)Vi]

[T, ey =1, " ¢c,") exp(-BX " 1, V)

1

or

or

where we define the equilibrium constant K

K_=(]," ¢,") exp(-BY," 1, v)

1
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Kd =1/ I(eq ... dissociation constant

In our case of the reaction A + B ¢<> AB, we can express Kd as:
Vi —
K = H c c.c/c

Example: total ©
. e
concentration: ° 8 o
© o
S50 uM a
u a ° @) ® o .
Kd - 2.5 'J..M Kd 25 IJ..M
80% bound 50% bound

Figure 6.24 Physical Biology of the Cell (© Garland Science 2009)
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Application to Ligand-Receptor Binding:
L+R& LR

K, = [L][RV/[LR] or [LR] = [L] [RI/K

Binding probability:

[LR] [LI/K

[LR] +[R]  1+[LI/K
A natural interpretation of Kd: Kd is the concentration at which

the receptor has a probability of 72 of being occupied by a ligand.
Based on out prior result, we can express it in terms of lattice

model parameters as: Kd =y~ exp(BAe)
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Important: Kd depends on the concentration of free ligands not

their fotal concentration!
(1) affinity chromatography

‘.‘ ege . . ]
receptors | o (2) equilibrium dialysis
6.
2
- A
immobilized < i
I.gands nd >‘C>-<
+
-+
+
L receptors ~
light source detector

§ :O:iD ligands —

no binding blndmg
dialysis —

tubing e

Figure 6.25b Physical Biology of the Cell (© Garland Science 2009)

absorption

time
Figure 6.25a Physical Biology of the Cell (© Garland Science 2009)
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(D)

isothermal titration calorimetry

syringe

ligands

heat added

per second

receptors

Figure 6.25d Physical Biology of the Cell (© Garland Science 2009)

10/11/2011

(C) surface plasmon resonance

light source detector

angle 1:
no binding

angle 2:
binding

immobilized receptors

ligands

the Cell (© Garland Science 2009)

time
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Cooperative Ligand-Receptor Binding: The Hill Function
Biological function: an on-off switch behavior triggered by

Binding of a ligand to a receptor involves a cooperative
(all-or-none) mechanism:

L+L+Re LR
K ’= [LP’[R]/[L R]

(ILI/K )’ (ILI/K )"

L+(LVK) 1+ (LIK)"
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The larger the n, the sharper the binding curve (probability of
binding versus ligand concentration)

0 1 2 3 il 5
ligand concentration (K})

Figure 6.27 Physical Biology of the Cell (© Garland Science 2009)
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