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DEFINITION OF A MICROSTATE

Example: Binding of RNA polymerase 
to a DNA target site: a simple ligand-
receptor binding.

➔ a lattice model of the solution
➔   … number of lattice sites
➔ L … number of ligands
➔ a single receptor

What is a microstate? [see Fig.]

How many possible microstates is there?
(1) receptor is unoccupied:

!/[L! (  –  L)!]
  (2) receptor occupied: L → L 1 
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Another example of microstates: DNA in solution

(A) fluorescence microscopy image of DNA
(B) individual microstates of a single DNA molecule
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What is the occurrence probability of each microstate?
Example: A two-state system (ion channel: open versus closed)
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Two state system: only two microstates exist

➔ the time the ion channel is open versus the time the ion channel  
   is closed can be used to calculate the occurrence probabilities, 
 p

open
 and p

closed
 

➔ what determines these probabilities? 
energies of individual microstates, 

open
 and 

closed

The probability of finding a microstate with an energy E
i
 is

p(E
i
) = exp(-E

i
/k

B
T) / Z

The role and identity of Z:
- probabilities need to be normalized: ∑

i
 p(E

i
) = 1

- Z is known as the partition function
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 Z = ∑
i
 exp(-E

i
/k

B
T)   … sum over all microstates

Why do we need the probabilities and the partition function?

‹E› =  ∑
i
  E

i
 p(E

i
)  =   Z-1  ∑

i
 E

i 
exp(-E

i
/k

B
T)  … calculate the 

average quantities (e.g. average energy)

Useful expressions in terms of   = (k
B
T)-1

‹E› = Z-1 ∂Z/∂ ∂(ln∂
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Ligand-Receptor Binding:

binding of oxygen to hemoglobin
binding of transcription factors to DNA

How do we calculate the probability of receptor binding?



PHYS 461 & 561, Fall 2011-2012 810/06/2011

There are many microstates in which the receptor is bound 
and many microstates in which no binding takes place:

multiplicities of the two states
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Weight for a situation in which a receptor is bound:

weight (bound)  = exp(
b
)  ⅹ  ∑

sol
 exp[(L)

sol
]

∑
sol

 exp[(L)
sol

] = multiplicity ⅹ exp[(L)
sol

]

= !/[(L 1)! (  –  L 1)!]  exp[(L)
sol

]

weight (bound) = !/[(L 1)! (  –  L 1)!]  exp[

(L)

sol
]

weight (unbound) = !/[L! (  –  L)!] exp[L
sol

]

Partition function:
Z(L,) = weight (bound) + weight (unbound)
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Useful approximation for the case L ≪  :
!/(  –  L)! = L

Can be derived using Stirling's approximation: ln(N!) = N lnN – N

ln[!/(  –  L)!]  ln!  ln(  –  L)! ≈    ln  – – L) 
ln(  –  L)    – L) ≈ ln – L) ln(  –  L)   
ln[  – L)L /  – L)( L]  ≈ ln[L ( – L)L/  – L)] ≈

ln L

Thus, we can calculate p
bound

 as:

p
bound

 = (L/) exp() / [1 + (L/) exp()]

p
bound

 = (c/c
0
) exp() / [1 + (c/c

0
) exp()]
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Classical result: a competition between energetic and entropic
contributions to the free energy: c/c

0
 = ½ … half occupancy 
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Statistical Mechanics of Gene Expression:
RNA polymerase binding at promotor sites

Cells can control transcription and 
translation: revised central dogma
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Transcription: a process that begins once the polymerase
Escaped the promotor and moves along the gene (part of DNA)
And results in creation of mRNA molecule (a transcript).

a microscopy image of transcription
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Experimental evidence: thousands of RNA polymerase molecules
in E. coli bound to the DNA promoter sites
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Simplest model of RNA polymerase binding to DNA:

DNA modeled as:
-N

NS
 distinct boxes (NS … non-specific sites)

-P number of RNA polymerase molecules
(only one molecule per non-specific DNA site)

Partial partition function for non-specific binding:

Z
NS

(P, N
NS

)   N
NS

!/[P! (N
NS

P)!] exp(PNS

pd
)
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The total partition function is a sum of two parts:

[no RNAP on promoter] + [one RNAP on promoter]

Z(P, N
NS

)   Z
NS

(P,N
NS

)   Z
NS

(P1,N
NS

) exp(S

pd
) 

Probability of one RNAP bound to the promoter site is:



PHYS 461 & 561, Fall 2011-2012 1710/06/2011



PHYS 461 & 561, Fall 2011-2012 1810/06/2011

p
bound


Z

NS
(P1,N

NS
) exp(S

pd
) [Z

NS
(P,N

NS
)   Z

NS
(P1,N

NS
)exp(S

pd
)]


[1   N

NS
/P exp(

pd
)]1


pd

= S

pd 
-  NS

pd 

The more negative the difference 
pd

, the higher the probability 

of binding (lac P1: 2.9 k
B
T; T7 A1:   k

B
T).
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Classical derivation of the Boltzmann distribution:

system + reservoir = isolated system maximal entropy principle

Fundamental idea:

probability of finding a microstate
of the system is proportional to
the number of states available to
the reservoir when the system is
in its specific microstate:

p(E
s

I)p(E
s

II) 
W

r
(E

tot
 - E

s

I)W
r
(E

tot
 - E

s

II) 
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W
tot

(E
tot

 – E
s

I) = 1 ⅹ  W
r
(E

tot
 – E

s

I)

One state of the system ⅹ all possible
States of the reservoir

S = k
B
 lnW

S
r
(E

tot
 – E

s
)  = S

r
(E

tot
) –  (∂S

r
/∂E) E

s

(∂S
r
/∂E) = 1/T

p(E
s

I)p(E
s

II ) exp(–E
s

I)exp(–E
s

II )

Relationship between Z and free energy G:
G(X) = – k

B
T ln Z 

Z includes a sum over all microstates that 
contribute to the macrtostate X! 
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