Lectures 11-12: Fibrous & Membrane Proteins

Lecturer:

Prof. Brigita Urbanc (brigita@drexel.edu)

FIBROUS PROTEINS:

- → function: structural
 - microfilaments & microtubules
 - fibrils, hair, silk
 - reinforce membranes
 - maintain the structure of cells & tissues
- → large proteins: e.g. titin with ~30,000 amino acids
- → highly regular structure:
 - huge secondary structure block
 - interactions between adjacent chains
 - high sequence regularity & periodicity

A. β-structural fibrous proteins: e.g. silk fibroin

- → the major motif is: ... {-Ser-Gly-Ala-Gly-Ala-Gly-}₈ ...
- → antiparallel β-sheets: alternating
 - face-to-face (5.7Å)
 - back-to-back (3.5Å)

SEM image

B. α -structural fibrous proteins: e.g. α -keratin, tropomyosin

 \rightarrow α -helices \rightarrow coiled coil helices \rightarrow protofilament \rightarrow filament

- → 2-3 helices form a coiled coil (supercoil) with 140Å repeat
- → 3.5 residues per turn(7 residues involved in one full repeat)

Interactions of two α -helices in a double superhelix

- → residues a and d hydrophobic: contacts between helices
- → the rest of residues (b, c, e, f, g: hydrophilic)
- → increase in hydrophobicity in e & g: triple superhelix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

α-helical ridges:

- → ridges made of side chains
- → "i+4" ridge (left picture)
 contact zone forming parts
 d₄-a₈(-e₁₂)
 (g₇)-d₁₁-a₁₅
- *"i+3" ridge (right picture)
 contact zone forming parts
 a₁-d₄(-g₂)
 a₂-d₁₁
 (e₁₂)-a₁₅-d₁8

If one of the helices is turned about the vertical axis, superimposed on the other surface, turned about the vertical by $+20^{\circ}$, then both types of ridges will be parallel (aligned), maximizing the contacts between the two helices: a groups fit between d groups.

C. Collagen ("glue forming")

- → major structural protein (¼ of the total mass of proteins in vertebrates)
- → forms strong insoluble fibrils
- → collagen molecule: special superhelix of 3 polypeptides with only inter-chain hydrogen bonds
- → each chain in a poly(Pro)II helix conformation

Collagen Molecular Structure and Assembly

- → each chain is in a left-handed poly(Pro)II helix (3 residue repeat)
- → sequence repeats: (-Gly-Pro-Pro-)_n or (-Gly-X-Pro-)_n
 - Gly essential due to small side chain (H)
 - Pro (propensity for poly(Pro)II helix)
- → collagen folding initiated by procollagen (collagen chains + globular heads & tails): heterogeneity & correct register of natural collagen
- → collagen melts at a temperature only a few degrees higher than the body temperature
- → mutations in the collagen sequence cause hereditary diseases ("brittle bone" disease):

Link between protein misfolding and human disease!

COLLAGEN BIOSYNTHESIS

- → procollagen polypeptide chains synthesized on the ribosomes inside a cell
- → chain secreted into the lumen, modified by hydroxylation of certain prolines and lysines & glycosylation
- → chains associate into a triple helix
- → procollagen molecules are then secreted into the extracellular space
- → N and C propeptides are cleaved by specific proteases
- → collagen molecules then assemble into fibrils stabilized by the covalent crosslinks

Elastin: a matrix protein (skin, hair, lungs, vessels)

→ links formed by enzyme-modified lysines (4 per knot)

→ when enzymes malfunction: loss

Of elasticity

(B)

Elastin: Building block of artery & lung walls

MEMBRANE PROTEINS:

- → membranes: filmsof lipids & proteins(~40Å thick)
- → envelop cells and intracellular compartments
- → membrane proteins contribute to ½ of the weight of the membrane

What is the function of membrane proteins?

- → membrane as an "insulator" & proteins as "conductors"
- → membrane proteins: transmembrane transport of molecules & signals

Example 1: Bacteriorhodopsin

- → pumps protons across the membrane
- → structure determined by EM
- 7 regular α-helices, β-hairpin
 & irregular segments outside
 the membrane
- → hydrophobic groups of α-helices turned toward the lipid molecules (no water → max #Hbs)
- → cofactor retinal key to proton flow (photon induced)

Example 2: Porin

- wide cylinder build up from 16 β-segments:
 closed β-cylinder
 (no edges with free HB donors/acceptors)
 diameter 15Å
- → non-selective transport of polar molecules
- → ion transport?

 \Rightarrow the free energy of a charge q in a medium with permittivity ϵ :

$$\mathbf{F} = \mathbf{q}^2 / (8\pi \varepsilon_0 \varepsilon \mathbf{r})$$

r – van der Waals radius

→ free energy in water:

$$F(\varepsilon_w = 80, q - unit charge, r = 1.5 \text{Å}) \approx 1.5 \text{ kcal/mol}$$

→ free energy in membrane:

$$F(\varepsilon_m = 3, q - unit charge, r=1.5\text{Å}) \approx 37 \text{ kcal/mol}$$

 \Rightarrow

→ free energy change upon q transfer (water → membrane) $\Delta F \approx 35 \text{ kcal/mol}$

- → probability: $\exp(-\Delta F/k_B T) \approx \exp(-35/0.6) \approx 10^{-25}$
- → In only 1 of 10²⁵ attacks on membrane, q can penetrate it
- → If each attack takes 10^{-13} s, the total time needed: 10^{12} s $\approx 10,000$ years

- → transport of charges across the membrane is key to correct cell functions
- → in a membrane protein with a broad water-filled channel:

$$\mathbf{F} = \mathbf{q}^2 / [4\pi \varepsilon_0 (\varepsilon_w \varepsilon_m)^{1/2} \mathbf{R}]$$

R – radius of the ion channel

$$(\varepsilon_{\rm w} \varepsilon_{\rm m})^{1/2} = 15.5$$

- → for R=1.5Å → a fraction of 1 s
- → for R=3Å → a fraction of 1 ms
- → the size of the ion channel strongly affects the ion transport
- → position of the charged amino acids at the entrance of the channel regulates ion transport

Example 3: Hormone Receptor

(1) hormone bindsto the receptor→ changes itsStructure

(2) G-protein releases GDP and takes up GTP

(3) G-protein with GTP leaves the receptor to bind adenylate cyclase

(4) physiological reaction (ATP→cAMP)

Example 4: Photosynthetic reaction center complex

- → 3 integral proteins
- → 1 peripheral protein
- → cofactors:
 - -heme
 - -chlorophyll
 - -quinone

Photosynthetic pigments within the reaction center

- → pigment: a small cyclic molecule
- → pigments act like small conductors in the protein complex which serves as a shaping insulator

Electron transfer through the reaction center:

→ a photon displaces an efrom the "special pair" of chlorophylls (P)

- → e- passes through the "accessory" chlorophyll
 (B_L) in ~10⁻¹² s onto
 the pheophytin (H_L)
- → in ~ 10^{-10} s, the e- jumps to the quinone A (Q_{Λ})
- → in ~ 10^{-4} s, the e- arrives onto the quinone B ($Q_{\rm R}$)

- \rightarrow another half-cycle brings the second e- to $Q_B \rightarrow Q_B^{2-}$
- \rightarrow Q_B^{2-} leaves the membrane easily to participate further in photosynthesis
- → e- transport from the lower to the bottom compartment efficiently (50% of photons converted into e- transport)
- → ONLY the right pathway used (despite the symmetry)
- → all pigments contain partial double bonds:

- → e- are delocalized on distances greater than atom diameter
 (delocalized e- excited by visible light ⇒ pigment color)
- → e- transfer from pigment to pigment: quantum tunneling (no direct contact between pigment molecules)

Quantum Tunneling:

- → total energy of e-, K+U (kinetic+potential), smaller than the energy barrier:
 - each pigment molecule (chlorophyll, pheophytin, etc.) represents a potential well
 - in-between pigments molecules: a potential barrier

- \rightarrow Heisenberg uncertainty principle: $\Delta x \Delta p \sim \hbar$
- → $K \propto \Delta p^2 \propto 1/\Delta x^2$ & $U \propto 1/\Delta x$ → $\Delta x > 0$ for e-

- → a typical distance over which the e- probability decreases by 10-fold is ~1Å (atom radius)
- → 10^3 times lower e- probability at ~3Å
- \rightarrow when in the well, e- vibrates with f=10¹⁵ s⁻¹ (visible light)
- → if the next pigment molecule ~3Å away, time needed to tunnel across is 10^{-15} s × $10^3 = 10^{-12}$ s
- \rightarrow if \sim 5Å away, then 10^{-15} s \times $10^5 = 10^{-10}$ s
- \rightarrow if ~10Å away, then 10^{-15} s \times $10^{10} = 10^{-5}$ s

···

→ 40Å– thick membrane: e- jumps across in one step 10^{-15} s × $10^{40} = 10^{25}$ s = 10^{17} years!

Why does the e- not jump backwards on the pathway?

- → each next well is deeper (lower potential energy) to ensure reversibility
- → e- does not loose any energy due to tunneling
- → e- changes the conformational state of the pigment molecule (deformed pigment conformation)
- → pigment molecule (during conformational change)Dissipates energy to the surroundings
- → e- looses some of its energy as it jumps from well to well