Lectures 7-8: Statistical Mechanics of Phase Transitions Order Parameter Kinetics & Reaction Rates

Lecturer:

Prof. Brigita Urbanc (brigita@drexel.edu)

Fundamentals of Statistical Physics

→ Why is statistical physics description needed? Many degrees of freedom: secondary structure formation in a 100-residue peptide if each residue 2 states

1

2¹⁰⁰ possible peptide conformations

- → Simplifications: statistically averaged structure
- → Entropy: how many configurations/microstates correspond to the observe macrostate
- → Temperature: related to entropy
 NO numerous states → NO temperature

Entropy—Temperature Relationship

→ consider a closed system (E=const.): no heat exchange with the environment

- $\rightarrow M_{th}(E-\epsilon)$ the number of thermostat microstates
- → assumption: no interaction between the small part and the thermostat (e.g. ideal gas)

$$S_{th}(E-\epsilon)$$
 – thermostat entropy, by definition:
$$S_{th}(E-\epsilon) = \kappa \, \ln[M_{th}(E-\epsilon)]$$

$$\begin{split} M_{th}(E-\epsilon)-\text{the energy of the small part, }\epsilon \ll E \\ f(x+dx) &= f(x) + df/dx(x) \ dx + \dots \\ \downarrow \\ S_{th}(E-\epsilon) &= S_{th}(E) - dS_{th}/dE \big|_{E} \epsilon \\ \& \\ M_{th}(E-\epsilon) &= \exp[S_{th}(E-\epsilon)/\kappa] = \\ &= \exp[S_{th}(E)/\kappa] \times \exp[-\epsilon \ dS_{th}/dE \big|_{E}/\kappa] \\ &= M_{th}(E) \times \exp[-\epsilon \ dS_{th}/dE \big|_{E}/\kappa] \end{split}$$

According to the Boltzmann distribution:

exp[-
$$\varepsilon$$
 dS_{th}/dE |_E/ κ] = exp[- ε /(k_BT)]

$$\downarrow$$
dS_{th}/dE |_E = 1/T & κ = k_B

Thermodynamic definition of temperature: a reciprocal of the rate of the entropy change with the system energy E

$$\ln[M(E + k_B T)] = S(E + k_B T)/k_B = [S(E) + 1/T k_B T]/k_B$$

$$= S(E)/k_B + 1 = \ln[M(E)] + 1$$

Energy increase by k_B T results in an increase of the number of microstates by a factor of e=2.72.

Graphical representation of temperature:

M(E) – energy spectrum density, $M(E) \gg 1$

Consider a small system in a thermostat at fixed T & V

 \rightarrow probability w_i of being in the state i with the energy ϵ_i :

$$w_i = \exp(-\epsilon_i/k_B T)/Z(T)$$

$$Z(T) = \sum_{i} \exp(-\epsilon_{i}/k_{B}T)$$

Z(T) – partition function

If **Z**(T) is known, all thermodynamic quantities can be calculated (see the derivation below):

$$E(T) = \sum_{i} w_{i} \varepsilon_{i}$$

$$S(T) = k_{B} \sum_{i} w_{i} \ln(1/w_{i})$$

- ⇒ consider N systems, each of them can be in states $\{1, 2, ..., J\}$ with probabilities $\{w_1, w_2, ..., w_J\}$ $N_i \text{ (of all N systems will be in state i)} = w_i N$ $N = \sum_i w_i N = \sum_i N_i$
- → In how many ways can these N systems be distributed over the J states? (definition of the entropy)
 - select n_1 systems (out of N): $N! / n_1! (N-n_1)!$
 - select n_2 systems (out of $N-n_1$): $(N-n_1)! / n_2! (N-n_1-n_2)!$
 - total: $[N! / n_1! (N-n_1)!] \times [(N-n_1)! / n_2! (N-n_1-n_2)!]$ = $N! / n_1! n_2! (N-n_1-n_2)!$
 - for all J states: $N! / n_1! n_2! \dots n_J!$

$$\rightarrow N! / n_1! n_2! ... n_J! \sim (N/e)^N (e/n_1)^{n_1} (e/n_2)^{n_2} ... (e/n_2)^{n_J}
= (N/n_1)^{n_1} (N/n_2)^{n_2} ... (N/n_J)^{n_J}
= (1/w_1)^{Nw_1} (1/w_2)^{Nw_2} ... (1/w_J)^{Nw_J}
= [(1/w_1)^{w_1} (1/w_2)^{w_2} ... (1/w_J)^{w_J}]^N$$

= [the number of distributions of each system]^N

$$S(T)/k_{B} = \ln [(1/w_{1})^{w1} (1/w_{2})^{w2} ... (1/w_{J})^{wJ}]$$

Helmholtz Free Energy F (V,T = const.):

$$F(T) = E(T) - T S(T) = \sum_{i} w_{i} \{ \epsilon_{i} - T[-k_{B} \ln(w_{i})] \}$$
$$= -k_{B} T \ln[Z(T)]$$

$$Z(T) \rightarrow F(T) \rightarrow E(T)$$
: $S(T) = -(dF/dT)$

$$E(T) = F(T) + T S(T) = F(T) - T (dF/dT)$$

Knowing Z(T), we can get a complete TD description of the system!

Additional notes:

- → internal temperature of the small system = T
- → total energy = kinetic + potential
 - -kinetic depends on speeds
 - -potential depends on coordinates
 - -speeds & coordinates separate degrees of freedom

Only potential energy contributes to conformational changes!

Conformational changes:

- → gradual
- → sharp (phase transitions)

How to identify stable states at a given T, given the energy spectrum density M(E)?

 $S(E) = k_B \ln[M(E)]$ – find a stable state at $T=T_1$ Consider: $1/T_1 = dS/dE$

Entropy S(E) cannot be a decreasing function of energy E \rightarrow negative temperature

A concave shape of S(E) does NOT correspond to a stable state.

Why? The system can decrease F by moving along S(E)!

S(E) needs to have a convex (not concave) shape:

Introducton to Phase Transitions

- → What is a phase transition: an abrupt change in TD behavior associated with a discontinuity in some TD function
- → A more mathematical definition: at p=const., a phase transition occurs at T₀, at which the Gibbs free energy G(P,T) is singular
- \rightarrow G(P,T) is continuous at T_0 , some derivative is discontinuous at T_0 :

 1^{st} derivative discontinuous → 1^{st} order phase transition 2^{nd} derivative discontinuous → 2^{nd} order phase transition

First-Order Phase Transitions

⇒ Examples: boiling and freezing of water ΔV and ΔS at T_0 : $V = (\partial G/\partial P)_{T_0} \& S = -(\partial G/\partial T)_{T_0}$

→ Latent Heat: L₀ = T₀ (s₂ - s₁)
s_i - specific entropy (per particle
per mol,
per unit mass, or
per unit volume)

Phase Diagrams of the Liquid-Gas (L-G) Transition

Second-Order Phase Transitions

- Example: at the critical point of L-G transition
 L & G → same densities & specific entropies
- → Heat Capacity (2nd derivative of G) is singular at the transition temperature T_C:

$$C_{p} = -T d^{2}G/dT^{2} = C_{0} |t|^{-\alpha},$$

where t is reduced temperature: $t = T-T_c/T_c$

⇒ Exponent α (critical exponent) is the same for T< T_C and T> T_C, but the constant C₀ is not. NO latent heat!

Other examples of the 2^{nd} order phase transition:

- → ferromagnetic transition in magnetic materials
- → order-disorder transition in metallic alloys
- → conductor → superconductor transition
- → fluid → superfluid transition

Order Parameter:

→ the low-temperature state typically more ordered than the high-temperature state

 \Rightarrow

- → \exists order parameter (=0 in the high-temperature state): e.g. magnetization: $\mathbf{M} \sim \mathbf{m}_0 |\mathbf{t}|^{\beta}$,
- \Rightarrow critical exponent β (associated with the order parameter)

At zero magnetic field (H=0), 2nd order transition, at H>0, 1st order transition

Order Parameter (M) vs T

Phase Diagram M vs H

The Most Important Critical Exponents:

- $\rightarrow \alpha$ (heat capacity/specific heat, $C_p \sim |t|^{-\alpha}$ diverges)
- $\rightarrow \beta$ (order parameter, e.g. magnetization M~|t|^{\beta}goes to 0)
- $\rightarrow \gamma$ (susceptibility χ : M = χ H, $\chi \sim |t|^{-\gamma}$ diverges)
- \rightarrow v (correlation length ξ : ξ ~ $|t|^{-v}$ diverges)

Critical exponents, characteristic of the 2^{nd} order phase transitions, indicate power-law behavior of key TD quantities \Rightarrow no characteristic length scale at T_c !

Divergent correlation length ⇒details are not important ⇒

Universal Behavior → ∃ **Universality Classes** (defined by specific values of critical exponents)

Spinodal Decomposition/Nucleation

- → AKD: coexistence curve (equilibrium transition)
 L&G co-exist below AKD
- → BKC: spinodal curve (separates states with positive compressibility from non-physical negative compressibility)
- → inside spinodal: spontaneous phase separation occurs
- → between AKD and BKC (blue): nucleation (metastable states)

First – Order ("All-Or-None") Transition: \exists of an unstable concave region on the S(E) curve \in [E₁, E₂]

Transition occurs within the coexistence region $T \in [T_1, T_2]$

How do we get a complete thermodynamic description?

 \rightarrow S(E) known

$$\rightarrow$$
 1/T = dS(E)/dE \rightarrow T=T(E) \rightarrow E=E(T)

- \rightarrow calculate F(T) = E(T) T S(E(T))
- → calculate probability of having energy E at temperature T: $w(E) \propto exp[-(E-TS(E))/k_{_{\rm R}}T]$

Energy versus Temperature ΔT – coexistence of low and high energy states T^* – transition temperature

Probability Distribution w(E) at Different Temperatures

How about states with intermediate energies $E \in (E_1, E_2)$?

- → because they lie below the tangent of 1/T*, these intermediate states have a higher free energy F
- → the two stable states are separated by a free energy barrier ΔF
- \rightarrow in proteins, a transition at T^* occurs as a jump over ΔF (takes time to occur)
 - \Rightarrow
- \rightarrow Hysteresis (with respect to T^*):
 - slight overcooling (when freezing)
 - slight overheating (when melting)

metastable states nucleation

Estimation of the temperature interval ΔT (the coexistence region):

→ at transition temperature : $F_1(T^*)=F_2(T^*)$ $F_{1}(T^{*}) = E_{1} - T^{*}S_{1}$ $F_{2}(T^{*}) = E_{2} - T^{*}S_{2}$ $E_{2} - E_{1} = T^{*}(S_{1} - S_{2})$ $\rightarrow \delta \mathbf{F} = \mathbf{F}_{1}(\mathbf{T}^{*} + \delta \mathbf{T}) - \mathbf{F}_{2}(\mathbf{T}^{*} + \delta \mathbf{T}) =$ $F_1(T^*) + (\delta F_1/\delta T) \delta T - F_2(T^*) - (\delta F_2/\delta T) \delta T =$ $F_1(T^*) - F_2(T^*) + [(\delta F_1/\delta T) - (\delta F_2/\delta T)] \delta T =$ + $[-S_1 + S_2] \delta T = (S_2 - S_1) \delta T$

→ the phases coexist when:
$$\exp(-\delta F/k_B T^*)$$
 ∈ [0.1,10] (factor that determines the probabilities)

$$\rightarrow \ln(10) \sim 2 \& \ln(0.1) \sim -2 \implies \delta F/k_B T^* \in [-2, 2]$$

$$\rightarrow \Delta T (S_2 - S_1)/k_B T^* = 2 - (-2) = 4 \Rightarrow \Delta T = 4 k_B T^*/(S_2 - S_1)$$

$$\rightarrow \Delta T = 4 k_B T^{*2} / (E_2 - E_1)$$

 \rightarrow estimate ΔT :

$$k_B T^* = 0.6 \text{ kcal/mol (at } T^* = 300 \text{K})$$

$$E_2 - E_1 = 50$$
 kcal/mol (typical of protein melting)

$$\Delta T \sim 10K$$
 (as opposed to 50 kcal/system for a piece of ice $\Delta T \sim 10^{-23}K$)

Second order phase transitions (NO coexistence of states):

Kinetics of Conformational Changes:

- the time scale of an elementary process τ
 (e.g. τ~1ns for each residue to adopt a secondary structure)
- ⇒ the time scale of the process within the entire peptide of N residues NOT N× τ but much LONGER (e.g. N=100, process takes not N× τ =100 ns but 1s)
- \rightarrow reason for a SLOW rate: a free energy barrier ΔF

Classical Theory of Transition States:

- → a system going from state 0 → state 1 with one barrier #
 (no traps)
- → process rate determined by:
 - (a) the population of the transition states (states ON TOP of the barrier #)
 - (b) the transition rate from the top of the barrier to state 1 (post-transition state)
- → free energy (F) versus reaction coordinate (RC):

$$τ$$
 - time of one
reaction step #→1
$$t_{0→1} = τ(n/n^{\#}) =$$

 $τ$ exp(+ΔF[#]/k_BT)

Transition rate 0
$$\rightarrow$$
1 definition: $k_{0\rightarrow1} = 1/t_{0\rightarrow1}$
 $k_{0\rightarrow1} = \tau^{-1} \exp(-\Delta F^{\#}/k_{B}T)$

How does \exists of a trap X affect the 0→1 transition rate?

 \rightarrow sequential barriers, $0\rightarrow X$ and $X\rightarrow 1$, on the transition path result in a sum of transition times:

$$\mathbf{t}_{0\to 1} = \mathbf{t}_{0\to \mathbf{X}} + \mathbf{t}_{\mathbf{X}\to 1}$$

→ parallel transition paths: 0→1 through barrier #1
 0→1 through barrier #2 ...

result in a sum of transition rates:

$$\mathbf{k}_{0\to 1} = \mathbf{k}_{0\to X} + \mathbf{k}_{X\to 1}$$

Sequential barriers slow down the transition, parallel transition pathways speed up the transition.

For only a few barriers or transition pathways:

- \Rightarrow the barrier with the largest $\Delta F^{\#}$ determines the overall transition rate
- \Rightarrow the transition pathway with the smallest $\Delta F^{\#}$ determines the overall transition rate

Kinetic Energy Dissipation and Diffusion

- time needed for a molecule to dissipate its kinetic energy (because of the friction against a viscous fluid): $\sim 10^{-12}$ s
- diffusion time: ~10⁻⁹ s

Free energy barrier is typically a consequence of entropy loss upon bringing different parts of the chain together.