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Fundamentals of Statistical Physics

> Why is statistical physics description needed?
Many degrees of freedom:
secondary structure formation in a 100-residue peptide

if each residue 2 states
J
2'% possible peptide conformations

> Simplifications: statistically averaged structure

> Entropy: how many configurations/microstates correspond
to the observe macrostate

> Temperature: related to entropy
NO numerous states = NO temperature
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Entropy—Temperature Relationship

> consider a closed system (E=const.): no heat exchange with
the environment

Thermostat: E-€

€

¥ small part

> Mth(E-e) — the number of thermostat microstates

> assumption: no interaction between the small part and the
thermostat (e.g. ideal gas)
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S, (E-€) — thermostat entropy, by definition:
Sth(E-e) =K ln[Mth(E-e)]

M (E-g)—the energy of the small part, e <E

f(x+dx) = f(x) + df/dx(x) dx + ...
J
S, (E-€) =S _(E)-dS /dE | -
&
Mth(E-e) = eXp[Sth(E-e)/K] =
= exp[S_(E)/x] X exp[-€ dS_/dE | Jx]
=M _(E) X exp[-¢e dS_/dE | JK]
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According to the Boltzmann distribution:
exp[-€ dS_/dE | Jx] = expl[-€/(k T)]

!
dS /dE| =1UT &k =k,

Thermodynamic definition of temperature:
a reciprocal of the rate of the entropy change with

the system energy E

!
In[M(E + k T)] = S(E + k T)k =[S(E)+ Tk Tlk_

= S(E)/kB+ 1=In[M(E)] +1
Energy increase by k T results in an increase of the
number of microstates by a factor of e=2.72.
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Graphical representation of temperature:

A
S(E)

S+dS
v

dS/E| = 1/T

a

S(E) =k In[M(E)]

M(E) — energy spectrum density, M(E) » 1
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Consider a small system in a thermostat at fixed T & V

> probability w_of being in the state i with the energy € :
W= exp(-ai/kBT ) IZ.(T)
Z(T) =X exp(-€/k T)

Z.(T) — partition function

If Z(T) is known, all thermodynamic quantities can be
calculated (see the derivation below):

E(T) = Zi W€
S(T) = kBZ‘.i w. ln(l/wi )
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> consider N systems, each of them can be in states
{1, 2, ... J} with probabilities {wl, Wy eee WJ}
N. (of all N systems will be in state i) = w_N
N=X wN=X N
> In how many ways can these N systems be distributed

over the J states? (definition of the entropy)
- select n systems (outof N): N!/ nl! (N-nl)!

- select n systems (out of N-nl): (N -nl)! / n2! (N-nl-nz)!

- total: [N!/ nl! (N-nl)!] X [(N-nl)! / n2! (N-nl-nz)!]
=N!/ nl! nz! (N-nl-nz)!
- for all J states: N! /nl! nz! nJ!
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> Stirling's approximation: n! ~ (n/e)"

>N!/n!n! ..n!~ (N/e)® (e/n )™ (e/m )™ ... (e/m )™
= (N/m)™ (N/n)™ ... (N/n )™
= (M/w)™ (Uw )™ ... (1/w )™
= [M/w)" Uw )™ ... (I/WJ)WJ]N

= [the number of distributions of each system]"
J
S(T)/k, =1In [(1/w1)Wl (1/w2)W2 (I/WJ)WJ]

Helmbholtz Free Energy F (V,T = const.):

F(T)=E(T)-T S(T) = Zi w. {t-:i - T[-kB ln(wi)]}
= -kBT In[Z(T)]
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Z(T)-> F(T)->E(T): S(T)=-(dF/dT)

E(T)=F(T)+TS(T)=FT)-T (dF/dT)
l

Knowing Z(T), we can get a complete TD description
of the system!

Additional notes:

> internal temperature of the small system =T

> total energy = kinetic + potential
-Kinetic — depends on speeds
-potential — depends on coordinates
-speeds & coordinates separate
degrees of freedom
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Only potential energy contributes to conformational
changes!

Conformational changes:
> gradual
> sharp (phase transitions)

How to identify stable states at a given T, given the
energy spectrum density M(E)?

S(E) = kB In[M(E)] - find a stable state at T=T1
Consider: 1/T1 = dS/dE
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Entropy S(E) cannot be a decreasing function of energy E
— negative temperature

A dS/dE = 1/T < 0
S(E)
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A concave shape of S(E) does NOT correspond to
a stable state.

A
S(E)

F< F1 (left & above the tangent) 1 /T1

F1 =E - ST1=const.

: (right & below the tangent)

K

1
Why? The system can decrease F by moving along S(E)!
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S(E) needs to have a convex (not concave) shape:

F =E -ST

A
S(E)| F< F1 (left & above the tangent) on the tangent)

Sl F> F1 (right & below the tangent)
_— S(E) = kB In[M(E)]
>
E1 E
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Introducton to Phase Transitions

> What is a phase transition:
an abrupt change in TD behavior associated with
a discontinuity in some TD function

> A more mathematical definition:
at p=const., a phase transition occurs at T, at

which the Gibbs free energy G(P,T) is singular

> G(P,T) is continuous at TO, some derivative is discontinuous
atT :
0
1* derivative discontinuous = 1* order phase transition

2"! derivative discontinuous — 2" order phase transition
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First-Order Phase Transitions

> Examples: boiling and freezing of water AV and AS at T :
V=(0G/oP) , &S =-(0G/0T),,

> Latent Heat: L0 = T0 (s2 — sl)
s. — specific entropy (per particle

per mol,
per unit mass, or
per unit volume)
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273 a7
temperature, K
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Second-Order Phase Transitions

> Example: at the critical point of L-G transition
L & G = same densities & specific entropies

> Heat Capacity (2" derivative of G) is singular at the
transition temperature T :

C, = -TdGMT*=C, Itl"”,

where t is reduced temperature: t = T-T C/TC.

>Exponent o (critical exponent) is the same for T< T and
T> TC, but the constant C0 is not. NO latent heat!
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Other examples of the 2" order phase transition:
> ferromagnetic transition in magnetic materials
> order-disorder transition in metallic alloys

> conductor = superconductor transition

> fluid — superfluid transition

Order Parameter:
> the low-temperature state typically more ordered than

the high-temperature state
—

> d order parameter (=0 in the high-temperature state):
e.g. magnetization: M ~ m Itl°,

> critical exponent 3 (associated with the order parameter)
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At zero magnetic field (H=0), 2" order transition, at H>0,
1* order transition

Order Parameter (M) vs T Phase Diagram M vs H
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The Most Important Critical Exponents:
> o (heat capacity/specific heat, C ~ ItI™ diverges)

> B (order parameter, e.g. magnetization M~It|’goes to 0)
> v (susceptibility ¥ : M = xH, y~[tI™" diverges)

>V (correlation length &: E~ItI™ diverges)
=

Critical exponents, characteristic of the 2" order phase
transitions, indicate power-law behavior of key TD
quantities = no characteristic length scale at T !

Divergent correlation length = details are not important
—

Universal Behavior = d Universality Classes
(defined by specific values of critical exponents)
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Spinodal Decomposition/Nucleation

> AKD: coexistence curve
(equilibrium transition)
L&G co-exist below AKD
> BKC: spinodal curve
(separates states with
positive compressibility
from non-physical
negative compressibility)
> inside spinodal: spontaneous
phase separation occurs
> between AKD and BKC (blue):
nucleation (metastable states)
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First — Order (‘“°‘All-Or-None’’) Transition:
3 of an unstable concave region on the S(E) curve [El, EZ]

A
S(E) T,

> K
E E

1 2
Transition occurs within the coexistence region Te [Tl, Tz]

10/15&20/2009 PHYS 461 & 561, Fall 2009-2010 23



How do we get a complete thermodynamic description?
> S(E) known

> 1/T =dS(E)/dE - T=T(E) » E=E(T)

> calculate F(T) = E(T) - T S(E(T))

> calculate probability of having energy E at temperature T:
W(E) o exp[-(E-TS(E))/kBT]
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Energy versus Temperature
AT - coexistence of low and high energy states
T" — transition temperature

E(T) A

L » T
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Probability Distribution w(E) at Different Temperatures

A
w(E)
T
2
— >
>
T
1
— g
E K E
1 2
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How about states with intermediate energies E € (E1’ EZ)?

> because they lie below the tangent of 1/T", these

intermediate states have a higher free energy F
—

> the two stable states are separated by a free energy
barrier AF
> in proteins, a transition at T  occurs as a jump over AF
(takes time to occur)

=
> Hysteresis (with respect to T ):
. . . metastable
- slight overcooling (when freezing) “(afes
- slight overheating (when melting) Hucleation
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Estimation of the temperature interval AT
(the coexistence region):

> at transition temperature : F ( T*)=F2(T*)
Fl( T = E1 -T*S1
F(T)=E -T'S,
—
E2 — E1 = T*(S1 - Sz)
>8F =F (T" +0T) - F (T'+8T) =
F (T) + (8F /8T) 8T - F (T") - (3F /8T) 8T =
F (T") - F(T") + [(8F /5T) - (8F /5T)] 8T =
0  +[-S,+S]18T=(S,—S)8T
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> the phases coexist when: exp(-SF/kBT*) e [0.1,10]

(factor that determines the probabilities)
>In(10) ~2 & In(0.1) ~ -2 = 8F/kBT* € [-2, 2]

> AT (S, - Sl)/kBT* =2-(-2)=4 = AT=4 kBT*/(S2 -S))
> AT =4 kBT*Z/(E2 -E)

> estimate AT:
kBT*= 0.6 kcal/mol (at T = 300K)

E —E =350 kcal/mol (typical of protein melting)

AT ~ 10K (as opposed to 50 kcal/system
for a piece of ice AT ~ 10*K)
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E(T)
N

Second order phase transitions
(NO coexistence of states):

w(E)
T2

ST

10/15&20/2009
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Kinetics of Conformational Changes:
> the time scale of an elementary process T
(e.g. T~1ns for each residue to adopt a secondary structure)
> the time scale of the process within the entire peptide
of N residues NOT NX t© but much LONGER
(e.g. N=100, process takes not NX 1=100 ns but 1s)
> reason for a SLOW rate: a free energy barrier AF

Fy

0 1
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Classical Theory of Transition States:
> a system going from state () = state 1 with one barrier #
(no traps)
> process rate determined by:
(a) the population of the transition states
(states ON TOP of the barrier #)
(b) the transition rate from the top of the
barrier to state 1 (post-transition state)
> free energy (F) versus reaction coordinate (RC):

) n’ T = time of one
1 A" reaction step #-1
L t,,= t(n/n) =
0 1. RC 7 exp(+AF'/k T)

10/15&20/2009 PHYS 461 & 561, Fall 2009-2010 32



Transition rate 0—1 definition: ko_)1 = 1/t0_)
k =1 exp(-AF'/k T)

1

How does d of a trap X affect the 0—1 transition rate?

> sequential barriers, 0—»X and X—1, on the transition path
result in a sum of transition times:

t = to_)X + tX_)

0-

1

> parallel transition paths: 0—1 through barrier #1
0—1 through barrier #2 ...

result in a sum of transition rates:
k0—>1 = k0—>x + kX—)l
Sequential barriers slow down the transition, parallel

transition pathways speed up the transition.
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For only a few barriers or transition pathways:

> the barrier with the largest AF* determines the
overall transition rate

> the transition pathway with the smallest AF”
determines the overall transition rate
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Kinetic Energy Dissipation and Diffusion

- time needed for a molecule to dissipate its Kinetic energy
(because of the friction against a viscous fluid): ~10™"* s

- diffusion time: ~10” s

- folding time typically 10 to 10” s >> diffusion time
J
indication of the free energy barrier

Free energy barrier is typically a consequence of entropy
loss upon bringing different parts of the chain together.
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