Lecture 17;
Denaturation of Globular Proteins
& Cooperative Transitions

Lecturer:
Prof. Brigita Urbanc (brigita@drexel.edu)
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Protein Denaturation < Loss of the Native 3D Structure

> in vitro denaturation: - abnormal temperature
- abnormal pH (H* or OH’ions)
- denaturants (e.g. urea, SDS*)
> in vivo (in the cell) ised S
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Protein Denaturation: S-shaped Changes in Some Quantities
- fluorescence & CD intensities (left)
- migration during electrophoresis (right)

O 0 .
£
& = O
- o o
£ N5
al} im
u 5000 E
: O 0
E £7
5 =
= ()
T o
-10000 =
2[] | | Y
0 05 10 15 20 0 » & mol/|

12/01/2009 PHYS 461 & 561, Fall 2009-2010 3



Calorimetric Studies: Heat Capacity of Denaturation

> the shaded area: the enthalpy (AH) absorbed during the
denaturation: AH= C AT

> AH used to break the
non-covalent bonds in

the globular protein Heat capacity
Ce

> CP' AT- contribution of

the solvent (expanding

the buffer volume durin : 30 =0 0 9
temperature increase) Temperature/°C
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AT — non-zero width of the denaturation transition
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Is Protein Denaturation All-Or-None OR Gradual Transition?
How can we tell? What is the criterion?
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Van't Hoff's Criterion for existence of ‘‘all-or-none”
Transition:
> Comparison of
- the ‘“effective heat” of transition, AE,
(the heat consumed by one “melting unit”)

- the ‘“calorimetric heat” of the transition, AH/N,
(the heat per one melting protein molecule,
N — number of protein molecules)

> van't Hoff's criterion: if AE = AH/N, transition is
ALL-OR-NONE
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If AE < AH/N, the “melting unit” is smaller than one protein
molecule = the protein melts in parts.
The effective heat of the transition is related to the width AT:
— “melting unit” can be in 2 states:
(1) with energy E and entropy S (solid or native)
(2) with energy E' and entropy S' (molten)
—assume: E, S, E', S do not depend on T
— according to Boltzmann statistics, probability to be in the
molten state P : (AE=E'-E & AS =S'-S)
vormen— €XPI-(E'-TSHK TV/
{exp[-(E'-TS")k TJ+exp[-(E-TS)k T]}
= {1+exp[(AE-TAS)/]kBT}'1
P =1-P

SOLID MOLTEN
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How sharp is the transition?

— dP /AT =?

MOLTEN

— for an easier derivation: X = (AE-TAS)/kBT
_ Xy-1
MOLTEN (1 +e7)

_ X Xy-1
PSOLID_ e (1+e)

- dP /[dT = dP /dX X dX/dT
MOLTEN

MOLTEN
=—e* (1 +e%? X [- (AE - TAS)/k T*~AS/k T]
1
dl)MOLTEN/drr = l)MOLTEN(1 - I)MOLTEN) AE/kBTZ
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— the mid-transition: T = AE/AS & P oo (T)=P (T)=v2
N 0 SOLID 0
— the maximum of ap /dT is close to T (if AE/kBT > 1)
(dPMOLTEN = A AE/kBTo2

/dT)
—in the region AT: P . changes 0 — 1
— (dP

T=TO0

MOLTE

/[dT) . =AP /AT = 1/AT

T=T0 MOLTEN

U
1/AT = AEﬂ(BTO2

AE = 4kBT02/ AT

— melting unit AE calculated from the S-shape of the transition

MOLTEN

— heat absorbed by one protein molecule: AE =AH/N

(N = m/M - number of protein molecules
m — total mass & M — molecular mass of the protein)
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Three possible outcomes:

(1) AE < AH/N - “melting unit’’ smaller than one protein
molecule (protein melts in parts)

(2) AE = AH/N - “melting unit” exactly one protein molecule
(all-or-none transition)
van't Hoff criterion

(3) AE > AH/N - “melting unit” larger than one protein mol.
(melting of an aggregate)

Protein Melting — A Result of an Elevated Temperature

Decay of Protein Structure Observed Also at Abnormally
Low Temperatures ® COLD DENATURATION
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Experimental Evidence for Cold Denaturation

Cp

both heat & cold
denaturation
‘“all-or-none”’
transitions !

- 20 O
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heat denaturation

-

cold denaturation
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> strength of hydrophobic/hydrophilic effect increases with T
> at temperatures below ~10° C, hydrophobic forces WEAK
> the native structure is the most stable at room Ts

> protein melting
at T ~ 60-80°C

> different curves
for different
proteins

> for large number
of proteins, T of
denaturation <
freezing T of
water
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How does a denatured protein look like? Experimental data
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Consensus: 3 of the molten globule (MG) state

Native globule Molten globule Coil
L L

> MG: intermediate state of protein unfolding >

> secondary structure exists, side chain ordering minimal

> some native contacts (involving aromatic chains, NMR data)
> solvent easily penetrates into the MG state
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MAIN PROPERTIES OF MOLTEN GLOBULE STATE
and methods of their registration

“GLOBULE”
(like native protein)

~ COMPACT-
NESS

Hydrodynamic volume,
Small- and medium- }
angle X-ray scattering
Large-angle X-ray < PRESENCE
scattering OF CORE

NMR (spin echo) <& SOME AROMATIC
SIDE CHAINS ARE

FIXED
Far UV CD,
IR spectra, }<::> SECONDARY
NMR + H#D exchange STRUCTURE

Fluorescence < SOME Trp RESIDUES
ARE NOT ACCESS-

IBLE TO WATER

2D NMR <~ PRESERVATION OF SOME
LONG-RANGE CONTACTS

“MOLTEN"
(unlike native protein)

NO UNIQUE
~ PACKING OF

Near UV CD, }
SIDE CHAINS

H! NMR spectra

FLUCTU-

He»D exchange + NMR,
ATIONS

Proteolysis

NMR (spin echo) < MOBILITY OF
ALTPHATIC
SIDE CHAINS

Scanning & <~ NO FURTHER
isothermal MELTING
microcalorimetry (as arule)

Fluorescence < SOME Trp RESIDUES
ARE ACCESSIBLE

TO WATER

2D NMR <~ DECAY OF MOST LONG-
RANGE CONTACTS

Chromatography < POSSIBILITY OF “CORRECT™

(HPL.C)

S5-5 BOND FORMATION

DIFFERENCE from both native and unfolded states
Enhanced binding of non-polar molecules
(fluorescence of protein-bound hydrophobic dye, ANS)
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COURSE EVALUATION INSTRUCTIONS:

(1) Your course evaluation responses help us improve teaching and are greatly
appreciated. They are anonymous and you are free to participate or not.

(2) The lecture today will finish 15 minutes earlier to allow you to do the
course evaluation on-line.

(3) On-line evaluation can be done on the workstations available in the room
12-704 (or use your laptops or other workstations you can access). Login on
the workstations in 12-704 via
Login name: student_survey
Password: physics_rules!
in the case that you already do not have your own account.

(4) Course evaluation is set as an assignment on your BbVista home page.
Login there to fill out the survey.
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